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a b s t r a c t

The multivariate two-sample testing problem has been well investigated in the literature,
and several parametric and nonparametric methods are available for it. However, most
of these two-sample tests perform poorly for high dimensional data, and many of them
are not applicable when the dimension of the data exceeds the sample size. In this article,
we propose a multivariate two-sample test that can be conveniently used in the high
dimension low sample size setup. Asymptotic results on the power properties of our
proposed test are derived when the sample size remains fixed, and the dimension of
the data grows to infinity. We investigate the performance of this test on several high-
dimensional simulated and real data sets, and demonstrate its superiority over several
other existing two-sample tests.We also study some theoretical properties of the proposed
test for situations when the dimension of the data remains fixed and the sample size tends
to infinity. In such cases, it turns out to be asymptotically distribution-free and consistent
under general alternatives.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In a two-sample testing problem,we test the null hypothesisH0 : F = G, which suggests the equality of two distributions
F andG, against the alternative hypothesisH1 : F ≠ G. Usually, we have two sets of independent d-dimensional observations
x1, x2, . . . , xm i.i.d.

∼
F and y1, y2, . . . , yn i.i.d.

∼
G, and using these observations, we compute a test statistic to perform the test.

Instead of considering a general two-sample problem, sometimeswemake some assumptions on F andG and testH0 : F = G
in that restricted setup. For instance, if F and G are assumed to be same except for their locations (and/or scales), one can test
for the equality of their locations (and/or scales). For a multivariate two-sample location problem, the Hotelling T 2 test is
often used. While it is the most powerful invariant test for normally distributed data, other nonparametric tests outperform
the Hotelling T 2 test for a wide variety of non-Gaussian distributions. Moreover, it cannot be used when the dimension
of the data exceeds the sample size. Several attempts have been made in the literature to construct Hotelling T 2 type test
statistics that can be applied to high dimensional data (see e.g., Bai and Saranadasa [2], Srivastava [28], Chen and Qin [5]),
but these tests are also based on several model assumptions, and they are suitable only for location problems. Popular
nonparametric tests for two-sample location problem include Puri and Sen [23], Randles and Peters [24], Hettmansperger
and Oja [13], Möttönen and Oja [20], Choi and Marden [6] and Hettmansperger et al. [12]. Liu and Singh [17] and Rousson
[26] constructed nonparametric tests for multivariate two-sample location and scale problems. Some good reviews of most
of these tests can be found in Oja and Randles [22] and Oja [21]. However, all these above mentioned nonparametric tests
perform poorly when applied to high dimensional data, and in practice, none of them can be used when the dimension of
the data is larger than the sample size.
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Multivariate nonparametric tests for a general two-sample problem have also been proposed in the literature. Friedman
and Rafsky [7] used the idea of minimal spanning tree (MST) to generalize the univariate run test in multi-dimension.
Schilling [27] andHenze [10] proposed two-sample tests based on nearest neighbor type coincidences. Other nonparametric
tests for the general two sample problem includeHall and Tajvidi [9], Zech and Aslan [30], Baringhaus and Franz [3,4] and Liu
andModarres [16]. All these tests are rotation invariant, and they can be used even when the dimension of the data is larger
than the sample size. Rosenbaum’s [25] test can also be used in high dimension low sample size situations if the test statistic
is computed using the Euclidean distance. Another interesting feature of these tests is that all of them are based on inter-
point distances. These inter-point distances contain useful information about the separability between two distributions F
and G. Undermild conditions, F and G differ if and only if ∥X−X∗∥, ∥X−Y∥ and ∥Y−Y∗∥ differ in their distributions, where
X,X∗

i.i.d.
∼

F , Y, Y∗
i.i.d.
∼

G, and ∥ · ∥ denotes the Euclidean norm (see Maa et al. [19]). Such inter-point distances can be easily
computed in any dimension. In this article, we use them to construct a new test for a general two-sample problem.

In Section 2, we begin with some simple examples that show the limitations of some of the popular two-sample tests in
high dimension low sample size situations. In Section 3, we propose a new test to overcome these limitations and study the
power properties of the proposed test when the sample size remains fixed, and the dimension of the data grows to infinity.
Some high dimensional simulated and real data sets are also analyzed to compare its empirical performance with some
existing two-sample tests. In Section 4, we study the asymptotic behavior of the power function of the proposed test in
situations where the dimension of the data remains fixed and the sample size tends to infinity. We prove that the proposed
test is asymptotically distribution-free and consistent under general alternatives. Finally, Section 5 contains a brief summary
of the work and ends with a discussion on possible directions for further research. All proofs and mathematical details are
given in the Appendix.

2. Some illustrative examples

Let us consider a two-sample problem, where the observations in F and G are distributed as Nd((0, . . . , 0)′, Id) and
Nd((µ, . . . , µ)′, σ 2Id), respectively. Here, Nd stands for a d-variate normal distribution, and Id denotes the d × d identity
matrix. We considered three different choices of µ and σ 2, namely, (µ = 0.3, σ 2

= 1), (µ = 0, σ 2
= 1.3) and

(µ = 0.2, σ 2
= 1.2), and in each case, we generated 20 observations from each distribution to test H0 : F = G. Note

that these three choices of µ and σ 2 lead to a location problem, a scale problem and a location–scale problem, respectively.
In each case, the experiment was repeated 200 times, and the proportion of times a test rejected H0 was considered as an
estimate of its power. These estimated powers were computed for three popular two-sample tests, namely, Friedman and
Rafsky’s [7] multivariate generalization of the run test, the test based on nearest neighbor (NN) type coincidences (see, e.g.,
Schilling [27], Henze [10]) and the test proposed by Baringhaus and Franz [3]. Henceforth,wewill refer to themas the FR test,
the NN test and the BF test, respectively. The FR test constructs anMST usingm+n sample observations, and the test statistic
is given by T FR

m,n = 1+
N−1

i=1 Ui, where N = m+ n, and Ui (i = 1, 2, . . . ,N − 1) is an indicator variable that takes the value
1 if the i-th edge of the MST joins two observations from different populations, and 0 otherwise. Naturally, H0 is rejected if
T FR
m,n is small. The NN test statistic TNN

m,n,k (instead of TNN
m,n, we use TNN

m,n,k for its dependence on the number of neighbors k) can

be expressed as TNN
m,n,k =

1
Nk

m
i=1

k
j=1 Ij(xi) +

n
i=1

k
j=1 Ij(yi)


, where Ij(z) is an indicator function takes the value 1 if

z and its j-th neighbor belong to the same population, and 0 otherwise. This test rejects H0 for large values of TNN
m,n,k. The BF

test is motivated by the result that 2E∥X − Y∥ − E∥X − X∗∥ − E∥Y − Y∗∥ ≥ 0, where X,X∗
i.i.d.
∼

F , Y, Y∗
i.i.d.
∼

G, and the
equality holds iff F = G (see Baringhaus and Franz [3]). The BF test statistic T BF

m,n is constructed by replacing the expectations
with their empirical analogs, and the test rejects H0 for large values of T BF

m,n. We computed powers of these tests for different
values of d ranging from 2 to 500, and the results are presented in Fig. 1.

Note that in each of these examples, as d increases, the separability between F and G also increases. So, one should expect
the powers of these tests to tend to unity as d increases. We observed that in the case of the location problem (see Fig. 1(a)),
but not in other two cases. In the location–scale problem, although the power of the BF test increased with d, those of the
other two tests dropped down to zero as d increased (see Fig. 1(c)). In the case of the scale problem, all of these threemethods
yielded poor performance (see Fig. 1(b)). The reasons for such limitations of these existing methods will be discussed later
(see Section 3.2). These limitations clearly show the necessity to develop a new test for high dimensional data. We construct
one such test in the next section.

3. A new test based on inter-point distances

Consider four independent random vectors X,X∗
i.i.d
∼

F and Y, Y∗
i.i.d
∼

G. Let DFF ,DGG and DFG denote the distributions of
∥X − X∗∥, ∥Y − Y∗∥ and ∥X − Y∥, respectively, and µFF , µGG and µFG be their respective means. Under mild conditions,
Maa et al. [19] proved that DFF ,DGG and DFG are identical if and only if F = G. Now, (∥X − X∗∥, ∥X − Y∥) follows a
bivariate distribution, say DF , withmarginals DFF and DFG, respectively. Again, (∥Y−X∥, ∥Y−Y∗∥) follows another bivariate
distribution, say DG, with marginals DFG and DGG, respectively. So, when F and G differ, DF and DG differ as well, and vice
versa. If µDF

and µDG
denote the mean vectors of DF and DG, respectively, we have µDF

= µDG
⇔ µFF = µFG = µGG, and

that happens if and only if F = G (see Lemma 1 in the Appendix). Therefore, instead of testing H0 : F = G, we can test an
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