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a b s t r a c t

Operator scaling random fields are useful for modeling physical phenomena with different
scaling properties in each coordinate. This paper develops a general parameter estimation
method for such fields which allows an arbitrary set of scaling axes. The method is based
on a new approach to nonlinear regression with errors whose mean is not zero.
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1. Introduction

Random fields are useful models for many natural phenomena (e.g., see Adler [1]). Self-similar random fields capture the
fractal properties observed in applications (e.g., see Embrechts and Maejima [9]). An application to ground water hydrology
laid out in Benson et al. [3] notes that the Hurst index of self-similarity can be expected to vary with the coordinate. In a
two-dimensional model of an alluvial aquifer, a Hurst index H1 ≥ 0.5 models the organization of a porous medium in the
natural direction of ground water flow, and another Hurst index H2 < 0.5 describes negative dependence in the vertical
direction, which captures the layering effect of the fluvial deposition process that created themedium structure. The scaling
axes of themodel often differ from the usual spatial coordinates. For example, there is often a dipping angle that tilts the first
coordinate downward. In applications to fracture flow, a set of non-orthogonal scaling axes represents fracture orientations
(e.g., see Ponson et al. [18] or Reeves et al. [19]).

To address such applications, Biermé et al. [6] developed a mathematical theory of operator scaling stable random fields
(OSSRFs), based on ideas from [3]. An OSSRF is a scalar-valued random field {B(x)}x∈Rd such that

{B(cEx)}x∈Rd , {cB(x)}x∈Rd for all c > 0, (1.1)
where E is a d × d scaling matrix whose eigenvalues have real part greater than zero, cE = exp(E log c), with exp(A) =

I +A+A2/2!+ · · · the usual matrix exponential, and , denotes equality of all finite-dimensional distributions. If the scaling
matrix E has a basis of eigenvectors E bi = aibi for i = 1, . . . , d, then cEbi = caibi for i = 1, . . . , d, and it follows immediately
from (1.1) that the one-dimensional slice Bi(t) := B(tbi) is self-similar with Hurst index Hi = 1/ai, i.e.,

{Bi(ct)}t∈R , {cHiBi(t)}t∈R for all c > 0.
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In particular, the Hurst indexHi of self-similarity varies with the coordinate, and the scaling axes b1, . . . , bd can be any basis
for Rd. The construction of the OSSRF in [6] ensures that the random field has stationary increments, i.e.,

{B(x + h)− B(h)}x∈Rd , {B(x)}x∈Rd for all h ∈ Rd,

and then it follows that any one-dimensional slice Bx,i(t) := B(x + tbi) − B(x) is self-similar with Hurst index Hi. If the
random field is Gaussian, then Bi(t) := B(tbi) is a fractional Brownian motion with Hurst index Hi = 1/ai, since this is the
only self-similar Gaussian process with stationary increments [20, Corollary 7.2.3]. OSSRFs were applied to ground water
hydrology by Hu et al. [12] to synthesize realistic porosity fields and hydraulic conductivity fields, consistent with aquifer
data. Themulti-scaling produces organized regions of high porosity (and/or conductivity) that create preferential flowpaths,
an important feature of realistic random field simulations that is not present in an isotropic model.

Practical applications of multi-scaling random fields require a method to estimate the parameters. For the special case
where the scaling axes equal the original Euclidean coordinates, estimationmethods have been developed by Beran et al. [4],
Boissy et al. [7], and Guo et al. [10]. However, applications to geophysics require a more general approach, with an arbitrary
set of scaling axes. This paper develops a general method for parameter estimation, which also estimates the appropriate
scaling axes. These axes need not be orthogonal. Our approach is based on a new method for nonlinear regression with
errors whose mean is not zero. This method for nonlinear regression may well have further applications in other areas.

In Section 2, we review OSSRFs and outline the parameter estimation problem, which involves a nonlinear regression
where the errors do not have a zero mean. In Section 3, we propose a new nonlinear regression method to handle the
nonzero mean error, and prove consistency and asymptotic normality for this estimator. In Section 4, we return to OSSRFs
and apply the proposed nonlinear regression method to estimate parameters. Section 5 summarizes the results of a brief
simulation study, to verify that the method gives reasonably accurate parameter estimates in practice. Some concluding
remarks are contained in Section 6.

2. Operator scaling random fields

In this section, we recall the spectral method for constructing OSSRFs; see Biermé et al. [6] for complete details. Then we
outline the proposed nonlinear regression method for parameter estimation.

Given a d × d scaling matrix E whose eigenvalues all have positive real part, we say that a continuous function
ψ : Rd

→ [0,∞) is ET -homogeneous if ψ(cE
T
ξ) = c · ψ(ξ) for all c > 0, ξ ∈ Rd. Then Theorem 4.1 in [6] shows

that there exists a stochastically continuous OSSRF

B(x) = Re


ξ∈Rd


ei⟨x,ξ⟩ − 1


ψ(ξ)−1−q/αWα(dξ)


, (2.1)

where q = trace(E), ⟨x, ξ⟩ =
d

i=1 xiξi and Wα(dξ) is a complex isotropic symmetric stable random measure with index
0 < α ≤ 2 and control measure m(dξ) = σ 2

0 dξ. If α = 2, then B(x) is a Gaussian random field, and for any Borel subset
A of Rd we have W2(A) = Z1 + iZ2, where Z1 and Z2 are independent and identically distributed (i.i.d.) Gaussian random
variables on R1 with mean zero and variance σ 2

0 |A|/2, so E[W2(A)2] = |A|, the Lebesgue measure of A. Corollary 4.2 in [6]
shows that the OSSRF (2.1) has stationary increments, and that the operator scaling property (1.1) holds. See for example
Samorodnitsky and Taqqu [20] for general details on stable stochastic integrals.

Next, we review a spectral method for simulating the OSSRF (2.1), using a fast Fourier transform (FFT); see Kegel [15] for
complete details. This method yields a spatial regression model for OSSRFs that is the basis for our parameter estimation
scheme. To simplify the discussion, we focus on the case of Gaussian OSSRFs with α = 2 in two dimensions. However,
everything extends easily to stable OSSRFs on Rd with index 0 < α < 2. First, we approximate the stochastic integral
in (2.1) by a Riemann sum. Let D = [−A, A]

2
\ (−B, B)2 ⊂ R2 be a large square centered at the origin with radius A,

with a much smaller square of radius B deleted to form an annular region, such that B/A is a rational number. Select a
large integerM such that (B/A)M is also an integer. Next we subdivide the region D into small squares of size A/M . Define
I = {−M, . . . ,M − 1}2 and J = I \ {−(B/A)M, . . . , (B/A)M − 1}2, a collection of integer grid points in R2, and set
ξk = (A/M)k for k = (k1, k2) ∈ J. Now let 1ξk be the square of side A/M with the point ξk at its southwest corner, i.e.,
1ξk = [(A/M)k1, (A/M)(k1 + 1)] × [(A/M)k2, (A/M)(k2 + 1)]. Then we define

JD(x) =


k∈J


ei⟨x,ξk ⟩

− 1

ψ(ξk)

−1−q/2W2(1ξk), (2.2)

where the complex-valued random variables W2(1ξi) are i.i.d. with (σ0A/M)(Z1 + iZ2), and Z1 and Z2 are i.i.d. N (0, 1/2).
As M → ∞, the approximating sum JD(x) converges in probability to the stochastic integral

ID(x) =


ξ∈D


ei⟨x,ξ⟩ − 1


ψ(ξ)−1−q/2 W2(dξ),

since the integrand is continuous on the compact set D (e.g., see [16, Section 7.7]). Since the stochastic integral (2.1) exists,
ID(x) converges in probability to (2.1) as A → ∞ and B → 0.
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