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a b s t r a c t

In this paper we assume that the observed p time series are linear combinations of p
latent uncorrelated weakly stationary time series. The problem is then to find an estimate
for an unmixing matrix that transforms the observed time series back to uncorrelated
time series. The so called SOBI (Second Order Blind Identification) estimate aims at a
joint diagonalization of the covariance matrix and several autocovariance matrices with
varying lags. In this paper, we propose a novel procedure that extracts the latent time series
one by one. The limiting distribution of this deflation-based SOBI is found under general
conditions, and we show how the results can be used for the comparison of estimates. The
exact formula for the limiting covariance matrix of the deflation-based SOBI estimate is
given for general multivariate MA(∞) processes. Finally, a whole family of estimates is
proposed with the deflation-based SOBI as a special case, and the limiting properties of
these estimates are found as well. The theory is widely illustrated by simulation studies.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The blind source separation (BSS) model is a semiparametric model, where the components of the observed p-variate
vector x are assumed to be linear combinations of the components of an unobserved p-variate source vector z . The BSS
model can then simply be written as x = Ωz,whereΩ is an unknown full rank p× pmixing matrix, and the aim is, based
on the observations x1, . . . , xT , to find an estimate of the mixing matrixΩ (or its inverse). Notice that, in the independent
component analysis (ICA), see for example [9], which is perhaps the most popular BSS approach, it is further assumed that
the components of z are mutually independent and at most one of them is Gaussian.

It is often assumed in BSS applications that the observation vectors x1, . . . , xT are independent and identically distributed
(iid) random vectors. However, in this paper x1, . . . , xT are observations of a time series. We assume that the p-variate
observations x1, . . . , xT obey a BSS model such that

xt = Ωzt , t = 0,±1,±2, . . . (1)

whereΩ is a full-rank p× p mixing matrix, and z = (zt)t=0,±1,±2,... is a p-variate time series that satisfies

(A1) E(zt) = 0,
(A2) E(ztz ′t) = Ip, and
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(A3) E(ztz ′t+k) = E(zt+kz ′t) = Dk is diagonal for all k = 1, 2, . . ..

The p time series in z are thus weakly stationary and uncorrelated. Note that an ICA time series model is obtained if (A3) is
replaced by a stronger assumption that the p component series of zt are mutually independent. No parametric assumptions
on the distribution of zt or on the autocovariance structures are made. For parametric maximum likelihood estimates of the
unmixing matrix for Gaussian autoregressive sources with known and unknown covariance structures, see e.g. [7,21].

The aim inmodel (1) is to find, given (x1, . . . , xT ), an estimate Γ̂ of an unmixingmatrix Γ such that Γ x has uncorrelated
components. Γ = Ω−1 is naturally one possible unmixing matrix. Notice thatΩ and z in the definition are confounded in
the sense that the signs and order of the components of z (and the signs and order of the columns of Ω , respectively) are
not uniquely defined.

In the signal processing community, model (1) is often described as a model with components which are temporally
correlated but spatially uncorrelated or as a ‘‘colored’’ data model as opposite to the ‘‘white’’ iid model [5,6]. Contrary to the
iid ICA model, multiple Gaussian sources are not excluded in the BSS model (1) assumption. In ICA higher order moments
are often used to recover the underlying sources, whereas inmodel (1) the use of second order statistics is adequate, and the
separation is based on the information coming from the serial dependence. Due to this property, this blind source separation
approach is also called the second order source separation (SOS) approach. BSS time series models have been widely used in
engineering, financial, risk management and brain imaging applications, for example. For some recent work with different
applications, see e.g. [4,8,11].

Many ICA or SOSmethods first whiten the data and then search for an orthogonal matrix to obtain the final solution. This
is done by optimizing some objective function, which in some cases is equivalent to jointly diagonalizing certain matrices
(see for example [18], for an overview of BSS methods based on joint diagonalization). There are then basically two general
ways in which the orthogonal matrix is obtained, either by finding its rows one after another (deflation-based method) or
simultaneously (symmetric method). Perhaps the most popular ICA procedure, the so called fastICA, for example has both a
deflation-based version and a symmetric version [9].

The outline of this paper is as follows. In Section 2.1 we first discuss the so called AMUSE estimator [19], which was the
first estimator of the unmixing matrix developed for this problem, and is based on the simultaneous diagonalization of two
autocovariancematrices. The behavior of this estimate depends heavily on the chosen lags and as a solution to this dilemma
the so called SOBI estimator [1], which jointly diagonalizes K > 2 autocovariance matrices, is considered in Section 2.2. A
new deflation-based estimation procedure for a joint diagonalization of autocovariance matrices is proposed. In Section 3
the asymptotical properties of the new SOBI estimate are derived. In Section 4, a large family of unmixing matrix estimates
is proposed with the deflation-based SOBI as a special case, and the limiting properties of these estimates are found as well.
The limiting behavior and finite-sample behavior of the estimates are illustrated in simulation studies in Section 5. The paper
is concluded with some final remarks in Section 6.

2. BSS functionals based on autocovariance matrices

2.1. Functionals based on two autocovariance matrices

Let us first recall the statistical functional corresponding to the AMUSE (Algorithm for Multiple Unknown Signals
Extraction) estimator introduced by Tong et al. [19]. Assume that x follows a blind source separation (BSS) model such
that, for some lag k > 0, the diagonal elements of the autocovariance matrix E(ztz ′t+k) = Dk are distinct, and write

Sk = E(xtx′t+k) = ΩDkΩ
′, k = 0, 1, 2, . . .

for the autocovariance matrices. The unmixing matrix functional Γk is then defined as a p× p matrix that satisfies

ΓkS0Γ ′k = Ip and ΓkSkΓ ′k = Λk,

whereΛk is a diagonal matrix with the diagonal elements in a decreasing order. Notice that Γk is affine equivariant, that is,
if Γk and Γ ∗k are the values of the functional in the BSS model (1) at x and x∗ = Ax for some non-singular p × p matrix A,
then Γ ∗k = ΓkA−1 and further Γkx = Γ ∗k x

∗ (up to sign changes of the components).
The statistical properties of the AMUSE estimator were studied recently in [12]. The exact formula for the limiting

covariancematrix was derived forMA(∞) processes, and the asymptotic as well as finite sample behavior was investigated.
It was shown that the behavior of the AMUSE estimate depends crucially on the choice of the lag k; the p time series can
for example be separated consistently only if the eigenvalues inΛk are distinct. Without additional information on the time
series, it is not possible to decide which lag k should be used in the estimation. To circumvent this problem [1] proposed the
SOBI (Second Order Blind Identification) algorithm seeking an unmixingmatrix that makes several autocovariancematrices
S0, S1, . . . , SK as diagonal as possible. In [1], an algorithm based on iterative Jacobi rotations is used to (approximately)
jointly diagonalize the autocovariance matrices. In this paper, we propose a new approach in which the latent uncorrelated
time series are found in a deflation-based manner (one by one).
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