
Journal of Multivariate Analysis 123 (2014) 281–303

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Model assisted Cox regression
Shoubhik Mondal, Sundarraman Subramanian ∗

Center for Applied Mathematics and Statistics, Department of Mathematical Sciences, New Jersey Institute of Technology, USA

a r t i c l e i n f o

Article history:
Received 26 December 2012
Available online 11 October 2013

AMS subject classifications:
62E29
62H10
62N01
62N02
62N03

Keywords:
Empirical coverage
Event-time hazard
Gaussian process
Loewner ordering
Mean integrated squared error
Missing at random

a b s t r a c t

Semiparametric random censorship (SRC) models (Dikta, 1998) [7], derive their rationale
from their ability to utilize parametric ideas within the random censorship environment.
An extension of this approach is developed for Cox regression, producing new estimators
of the regression parameter and baseline cumulative hazard function. Under correct
parametric specification, the proposed estimator of the regression parameter and the
baseline cumulative hazard function are shown to be asymptotically as or more efficient
than their standard Cox regression counterparts. Numerical studies are presented to
showcase the efficacy of the proposed approach even under significant misspecification.
Two real examples are provided. A further extension to the case of missing censoring
indicators is also developed and an illustration with pseudo-real data is provided.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The SRC framework to survival function estimation for a homogeneous population, introduced by Dikta [7], operates
as follows: specify a good-fitting parametric model for m(x), the conditional expectation of the censoring indicator given
the observed (possibly censored) event time, and replace the censoring indicators with the estimated model thereafter.
With correct parametric specification of m(x), this leads to an estimator which is asymptotically more efficient than the
Kaplan–Meier estimator. Subramanian [21] employed this idea to construct likelihood ratio based confidence intervals for
survival functions and reported good performance even in the face of considerable misspecification. The SRC approach is
more flexible than the nonparametric approach in the sense that it applies evenwhen there aremissing censoring indicators
(MCIs). In fact, when the MCIs are missing at random (MAR), no additional effort need be expended to address estimation
[22]. Here, we propose and implement an extension that incorporates the SRC approach into Cox regression.

Analogous to the homogeneous case, for Cox proportional hazards (PH) regression we propose to replace the censoring
indicator with any good-fitting parametric model for the aforementioned conditional expectation, which, in addition to
its dependence on the observed event time, may now also depend on a set of covariates Z . In order to understand the
rationale for tying SRC models to Cox regression, note that, under conditional independence of failure and censoring
variables given the covariate Z , m(x, z) = P(δ = 1|X = x, Z = z) is the ratio of the conditional event-time hazard to
the conditional total hazard [7,27]. Specifically, for the Cox PH regression model, the conditional censoring hazard is linked
to the event-time hazard through the multiplicative factor exp(−logit(m)), which is a smooth function of the conditional
odds of non-censoring givenX andZ . The standard Cox analysis ignores this relationship by leaving the conditional censoring
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hazard unspecified.With SRCmodels, however, we exploit the link, using amodel form. Although the relationship explicitly
calls for employing the logit, other choices such as the complementary log–log, generalized proportional hazards (GPH) and
the Cauchy linkmay also be explored form. In Section 3, the logit and Cauchy links are shown to provide improved estimator
performance over standard Cox PH regression, with the Cauchy performing better than the logit in the sensitivity study.
Furthermore, the SRC framework adapts to MCIs readily, unlike standard Cox analysis. We expect that in practice the added
flexibility and improved performance would justify the additional effort required in the search for a good-fitting model
form.

Yuan [27] extended the Koziol–Green model [12] to the subject-specific setting implicit in Cox regression, which
subsumes an earlier approach [23] as well. In terms of finite sample performance, both the proposed and Yuan [27]
estimators perform equally well, see Section 3. Our proposed method, however, offers a more attractive alternative for the
following reasons. Yuan [27] developed a log profile likelihood function which, however, involves the censoring indicator δ
and hence would be inapplicable when there are MCIs. Furthermore, his approach requires simultaneous estimation of the
finite dimensional components β and θ, compromising to some extent the simplicity of standard Cox regression analysis.
Indeed, for a logisticmodel, Yuan’s [27] approachwill not be able to take advantage of the available logit function in statistical
software. Our proposed method retains the simplicity of standard Cox regression and applies readily even when the MCIs
areMAR.We show that β̂ and Λ̂(t), the proposed estimators of β andΛ0(t) respectively, are each asymptotically as or more
efficient than the standard Cox regression estimators.

Liu andWang [14] proposed two estimators of β to account for the MCIs. They only focused on estimation of β, which is
a limitation. Their first estimator denoted β̂LW, was based on a mixture, that reduces to the Cox partial likelihood estimator
when there are no MCIs – and therefore less efficient than our proposed estimator when there are no MCIs. Their second
estimator requires computation of kernel estimates which would be inefficient due to curse of dimensionality and the need
for data-based optimal bandwidths. Numerical studies reported in Section 3 reveal that β̂ performs as well as or better
than β̂LW.

The article is organized as follows. In Section 2 we present our proposed estimators and provide theoretical comparisons
with standard Cox regression estimators. We then present our proposed extension when there are MCIs. In Section 3, we
present the results of simulation studies comparing the proposed and other approaches under discussion. We also provide
illustrations using data from a heart transplant study and a study on recidivism, and another illustration using pseudo-real
data. Technical details are given in the Appendix.

2. Proposed estimators and large sample results

LetNp(µ, Σ) denote a p-variate normal distributionwithmean vectorµ and variance–covariancematrixΣ. When there
are no MCIs, we observe n independent and identically distributed triplets (Xi, δi, Zi), i = 1, . . . , n, where X = min(T , C) is
theminimumof the failure and censoring times, δ is the censoring indicator (1when uncensored and 0when censored), and
Z denotes a p × 1 vector of covariates. The conditional hazard function of the failure time given Z takes the form λ(t|Z) =

λ0(t)eβT Z , where β is the p × 1 regression parameter and λ0(t) is a baseline hazard function. Writing Ni(t) = I(Xi ≤ t) and
Yi(t) = I(Xi ≥ t), i = 1, . . . , n, the Cox partial likelihood estimator of β, denoted by β̂C, solves SC(β) = 0, where

SC(β) =

n
i=1


∞

0
δi

Zi −

n
j=1

Yj(t)eβT ZjZj

n
j=1

Yj(t)eβT Zj

 dNi(t). (2.1)

Breslow’s [4] estimator of the baseline cumulative hazard function is given by

Λ̂0C(t) ≡ Λ̂0(t, β̂C) =

n
i=1

 t

0

δi
n

j=1
Yj(s)eβ̂

T
CZj

dNi(s). (2.2)

Andersen andGill [1] proved that β̂C
P

−→ β0 and n1/2(β̂C−β0)
D

−→ Np(0, Σ−1
C ), where Eq. (A.5) definesΣC. They also derived

the weak convergence of n1/2(Λ̂0C(t)−Λ0(t)), with the limiting variance function given by the first two terms of Eq. (A.45);
see also [24].

2.1. Censoring indicators always observed

To tie the SRC framework to Cox regression, we write m(X, Z, θ0) = P(δ = 1|X, Z). The unknown θ ∈ Rk, whose true
value is θ0, can be estimated by maximizing the quantity

n
i=1

{m(Xi, Zi, θ)}
δi{1 − m(Xi, Zi, θ)}

1−δi . (2.3)
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