Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Transformed goodness-of-fit statistics for a generalized linear model of binary data

Nobuhiro Taneichi^{a,*}, Yuri Sekiya^b, Jun Toyama^c

^a Department of Mathematics and Computer Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan

^b Kushiro Campus, Hokkaido University of Education, Kushiro 085-8580, Japan

^c The Institute for Use of Mathematics, Sapporo 063-0001, Japan

ARTICLE INFO

Article history: Received 13 October 2012 Available online 15 October 2013

AMS 2000 subject classifications: 62E20 62H10

Keywords: Asymptotic expansion Binary data ϕ -divergence statistics Generalized linear model Improved transformation

1. Introduction

We consider generalized linear models [11] in which the response variables are measured on a binary scale. Let *N* independent random variables Y_{α} , $\alpha = 1, ..., N$ corresponding to the number of successes in *N* different subgroups be distributed according to binomial distributions $B(n_{\alpha}, \pi_{\alpha})$, $\alpha = 1, ..., N$. If we use a monotone and differentiable function $g(\cdot)$ as a link function, we obtain a generalized linear model for binary data as follows.

$$g(\pi_{\alpha}) = \mathbf{x}'_{\alpha} \mathbf{\beta}, \quad (\alpha = 1, \dots, N),$$

where $\mathbf{x}_{\alpha} = (\mathbf{x}_{\alpha 1}, \dots, \mathbf{x}_{\alpha p})'$, $(\alpha = 1, \dots, N)$, are covariate vectors and $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)'$ is an unknown parameter vector and p < N. When g(t) is a canonical link function, that is,

$$g(t) = \log\left(\frac{t}{1-t}\right),\tag{2}$$

model (1) is a logistic regression model. When

$$g(t) = g_P(t) = \Phi^{-1}(t),$$
 (3)

Corresponding author. E-mail addresses: taneichi@sci.kagoshima-u.ac.jp (N. Taneichi), sekiya.yuri@k.hokkyodai.ac.jp (Y. Sekiya), mandheling@nifty.com (J. Toyama).

ABSTRACT

In a generalized linear model of binary data, we consider models based on a general link function including a logistic regression model and a probit model as special cases. For testing the null hypothesis H_0 that the considered model is correct, we consider a family of ϕ -divergence goodness-of-fit test statistics C_{ϕ} that includes a power divergence family of statistics R^a . We propose a transformed C_{ϕ} statistics that improves the speed of convergence to a chi-square limiting distribution and show numerically that the transformed R^a statistic performs well. We also give a real data example of the transformed R^a statistic being more reliable than the original R^a statistic for testing H_0 .

© 2013 Elsevier Inc. All rights reserved.

(1)

(3)

⁰⁰⁴⁷⁻²⁵⁹X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jmva.2013.09.014

where $\Phi(\cdot)$ is the cumulative distribution function of a standard normal distribution, model (1) is a probit model. When

$$g(t) = \log\{-\log(1-t)\},$$
(4)

model (1) is a complementary log-log model. Aranda-Ordaz [1] considered a family of link functions,

$$g(t) = g_{c}(t) = \log\left\{\frac{(1-t)^{-c} - 1}{c}\right\}, \quad (c \ge 0),$$
(5)

that depend on parameter *c*. By this family of link functions, we obtain a family of models that includes a logistic regression model when c = 1 and a complementary log-log model when c = 0 in the limit.

We consider the null hypothesis

$$H_0^{g}: \pi_{\alpha} = \pi_{\alpha}(\boldsymbol{\beta}) = g^{-1}(\boldsymbol{x}_{\alpha}^{\prime}\boldsymbol{\beta}), \quad (\alpha = 1, \dots, N).$$
(6)

Here, we assume that nuisance parameters of (6) are only β . That is, when we use g_c of (5) as a link function, we consider c to be fixed. In order to test the null hypothesis H_0^g , we consider the family of ϕ -divergence statistics [13]

$$C_{\phi} = 2\sum_{\alpha=1}^{N} n_{\alpha} \left\{ \hat{\pi}_{\alpha}^{g} \phi\left(\frac{\frac{Y_{\alpha}}{n_{\alpha}}}{\hat{\pi}_{\alpha}^{g}}\right) + (1 - \hat{\pi}_{\alpha}^{g}) \phi\left(\frac{1 - \frac{Y_{\alpha}}{n_{\alpha}}}{1 - \hat{\pi}_{\alpha}^{g}}\right) \right\},\tag{7}$$

where $\hat{\pi}_{\alpha}^{g} = \pi_{\alpha}(\hat{\beta}^{g})$, $(\alpha = 1, ..., N)$, $\hat{\beta}^{g} = (\hat{\beta}_{1}^{g}, ..., \hat{\beta}_{p}^{g})'$ is the maximum likelihood estimator of β under H_{0}^{g} given by (6) and $\phi(\cdot)$ is a real convex function in $(0, \infty)$, satisfying $\phi(1) = \phi'(1) = 0$ and $\phi''(1) = 1$. Here, we note that test statistics C_{ϕ} vary according to link function g. When we choose a convex function

$$\phi_a(t) = \begin{cases} \{a(a+1)\}^{-1} \{t^{a+1} - t + a(1-t)\} & (a \neq 0, -1) \\ t \log t + 1 - t & (a = 0) \\ -\log t - 1 + t & (a = -1) \end{cases}$$

as $\phi(t)$, C_{ϕ_a} becomes a power divergence statistic [5]

$$R^{a} = 2\sum_{\alpha=1}^{N} n_{\alpha} \left\{ I^{a} \left(\frac{Y_{\alpha}}{n_{\alpha}}, \ \hat{\pi}_{\alpha}^{g} \right) + I^{a} \left(1 - \frac{Y_{\alpha}}{n_{\alpha}}, \ 1 - \hat{\pi}_{\alpha}^{g} \right) \right\},\tag{8}$$

where

$$f^{a}(e,f) = \begin{cases} \{a(a+1)\}^{-1}e\left\{\left(\frac{e}{f}\right)^{a} - 1\right\} & (a \neq 0, -1) \\ e\log\left(\frac{e}{f}\right) & (a = 0) \\ f\log\left(\frac{f}{e}\right) & (a = -1). \end{cases}$$

Under H_0^g , all members of the class of statistics C_ϕ have a χ^2_{N-p} limiting distribution, assuming the condition that

$$n_{\alpha}/n \to \mu_{\alpha}, \quad (\alpha = 1, \dots, N) \text{ as } n \to \infty,$$
(9)

where $n = \sum_{\alpha=1}^{N} n_{\alpha}$, $0 < \mu_{\alpha} < 1$, $(\alpha = 1, ..., N)$, and $\sum_{\alpha=1}^{N} \mu_{\alpha} = 1$. Using the results, we can use C_{ϕ} as a goodness-of-fit test statistic for model (1). Statistic R^0 (log likelihood ratio statistic or deviance) and statistic R^1 (Pearson's X^2 statistic) are used frequently.

In the case of the goodness-of-fit test for a multinomial distribution, Yarnold [22] obtained an approximation based on asymptotic expansion for the null distribution of Pearson's X^2 statistic. The expansion consists of a term of multivariate Edgeworth expansion for continuous distribution and discontinuous terms. Approximations based on asymptotic expansions for null distributions of some kinds of multinomial goodness-of-fit statistics have been investigated [16,14,10]. Edgeworth approximations of the distributions of some kinds of multinomial goodness-of-fit statistics under alternative hypotheses have also been investigated [18,17,15,12].

On the other hand, Taneichi et al. [19] obtained an approximation based on asymptotic expansion of the distribution of deviance for testing H_0^g given by (6) when link function g is defined by (2), that is, in a logistic regression model. Using the continuous term of the expression of the approximation, Taneichi et al. [19] proposed a Bartlett-type transformed statistic and showed that it improves the speed of convergence to a chi-square limiting distribution of the deviance.

Download English Version:

https://daneshyari.com/en/article/1145667

Download Persian Version:

https://daneshyari.com/article/1145667

Daneshyari.com