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a b s t r a c t

In this paper, we suggest the new variable selection procedure, called MEC, for linear
discriminant rule in the high dimensional and large sample setup. MEC is derived as a
second-order unbiased estimator of the misclassification error probability of the linear
discriminant rule (LDR). It is shown that MEC not only asymptotically decomposes into
‘fitting’ and ‘penalty’ terms like AIC and Mallows Cp, but also possesses an asymptotic
optimality in the sense that MEC achieves the smallest possible conditional probability of
misclassification in candidate variable sets. Through simulation studies, it is shown that
MEC has good performances in the sense of selecting the true variable sets.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the problem of classifying a future observation vector into one of the two population groups
Π1 and Π2. For each i = 1, 2, Πi denotes a population from a multivariate normal distribution Np(µi, Σ), and it is
supposed that xij, j = 1, . . . ,Ni, are observed from the population Πi. Here, µi, i = 1, 2, and Σ are unknown parameters,
and they are estimated by the sample mean xi = N−1

i
Ni

j=1 xij i = 1, 2, and the pooled sample covariance matrix

S = n−12
i=1
Ni

j=1(xij − xi)(xij − xi)′ for n = N − 2N = N1 + N2. Shao et al. [14] show that the misclassification
error rate of the linear discriminant rule (LDR) is asymptotically close to ones of the optimal rule when p diverges to infinity
at a rate slower than n1/2. From this perspective, LDR works well for the situation where the number of variables used for
classification is much smaller than the training sample size. Thus, it is desired to find an optimal subset of variables in the
sense that misclassification error rate can be small. Variable selection methods for discriminant analysis have been studied
by Fujikoshi [1,3], Sakurai et al. [13], Wilbur et al. [16] and others. Related to this issue, multiple testing problems for no
additional information have been discussed by Rao [10,11] and Kshirsagar [5]. In this paper, we suggest a new variable
selection procedure based on misclassification error rate and establish the optimality in high dimensional and large sample
setting.
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To explain the new variable selection procedure, consider the following linear discriminant rule. Let x = (x1, . . . , xp)′ be
a future observation in the full model. Let j = (j1, . . . , jk(j))′ be a subset of the set {1, 2, . . . , p}, and let x(j) = (xj1 , . . . , xjk(j))

′

be the corresponding sub vector of x. Themodel based on the variable x(j) is denoted by j . LetJ be a suitable family of subsets
of {1, . . . , p}. The LDR for classifying x based on the model j is that x is classified as coming from Π1, ifW (j) > α, and from
Π2, if W (j) < α, where α is a cut off point for classification rule, and

W (j) = (x̄1(j) − x̄2(j))′S(j)−1

x(j) −

1
2
(x̄1(j) + x̄2(j))


.

Here, x̄i(j) i = 1, 2, and S(j) are the samplemean and the pooled sample covariancematrix in themodel j . Then the problem
of variable selection in LDR is regarded as how to select the best subset j from J. To this end, we consider the conditional
error probabilities of misallocation L1(j) = P[W (j) < α|x(j) ∈ Π1, x1(j), x2(j), S(j)] and L2(j) = P[W (j) ≥ α|x(j) ∈

Π2, x1(j), x2(j), S(j)], which can be expressed as

Lg(j) = Φ


(−1)g

(x̄1(j) − x̄2(j))′S(j)−1
{µg(j) − (x̄1(j) + x̄2(j))/2} − α

(x̄1(j) − x̄2(j))′S(j)−1Σ(j)S(j)−1(x̄1(j) − x̄2(j))


(1.1)

for g = 1, 2, where Φ(·) is the standard normal distribution function, and µg(j) and Σ(j) denote the population mean and
covariance matrix in the model j . When πi, i = 1, 2, is a prior probability of the group membership, the expected error rate
is given by

R(j) = π1R1(j) + π2R2(j)

where Rg(j) is the unconditional error of misallocation given by Rg(j) = E[Lg(j)] for g = 1, 2. The variable selection
procedure proposed in this paper is an asymptotically unbiased estimator of the misclassification error R(j) in the high
dimensional and large sample setting.

A naive procedure for selection of variables is the method of minimizing

Φ (−D(j)/2) , (1.2)

with respect to j ∈ J, where D(j) is the sample Mahalanobis distance based on x(j), namely,

D(j)2 = (x̄1(j) − x̄2(j))′S(j)−1(x̄1(j) − x̄2(j)). (1.3)

However, Φ (−D(j)/2) has the bias R(j) − E[Φ(−D(j)/2)] which is not negligible. McLachlan [8,9] derived a second order
asymptotic unbiased estimator of R(j) under the large sample framework, namely,

(A0): n → ∞, but p is bounded.

Fujikoshi [1] applied the estimator given by McLachlan [8,9] to the variable selection problem, and investigated the
asymptotic properties and the relationship with AIC. On the other hand, Raudys [12] and Wyman et al. [17] derived the
asymptotic approximations of the error probability under the high dimensional and large sample setting given by

(A1): (n, p) → ∞ with p/n → c0 ∈ [0, 1).

This setup not only includes the large sample setting (A0) as c0 = 0, but also covers the case of large dimension p subject to
p < n. This is practically important, because, as pointed out by Siotani [15], it is known that large sample approximations
under (A0) are not good when p is large. In fact, as seen from Fujikoshi et al. [4] and Kubokawa et al. [6], the approximations
under the setting (A1) give good approximations for large p less than n as well as small p.

In this paper, we derive a second-order unbiased estimator of R(j) in the high dimensional and large sample setting (A1).
The unbiased estimator is here called theMisclassification Error Criterion (MEC), which is useful for selecting variables in the
linear discriminant rule.We show thatMEC can be asymptotically decomposed into the ‘fitting’ and ‘penalty’ terms, namely,

MEC = Φ (−D(j)/2) + (penalty) + op(1),

where the penalty term increases in the dimension ofmodel j . This is a desirable property that variable selection procedures
like AIC and Cp should possess. We also show that MEC has an asymptotical optimality as a variable selection procedure in
(A1). Such optimality in the high dimensional and large sample setting is not known as long as we know.

Recently, Kubokawa et al. [6] derived a second-order approximation of the error probability of misclassification (EPMC)
for the ridge-type linear discriminant rule in the high dimensional and large sample setting, and derived a second-order
unbiased estimator of EPMC. Since the ridge-type linear discriminant rule is not invariant under scale transformations, their
approach needs to calculate various kinds of fourth moments of the inverted Wishart matrix. It was hard to obtain such
fourth moments, so that the approach used by Kubokawa et al. [6] cannot be used for developing an asymptotic optimality
of MEC. Instead, the method used in this paper is to express Lg(j) based on nine primitive random variables, namely four
random variables having the standard normal distribution and five random variables having chi-square distributions. These
stochastic expressions are essentially derived by Fujikoshi [3]. This approach not only makes it easier to derive the second-
order approximation and the second-order unbiased estimator of R(j), but also enables us to establish the asymptotic
optimality of MEC as a variable selection procedure in both high dimensional and large sample settings.
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