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a b s t r a c t

The paper shows that the fourth cumulant of a finite mixture distribution might be
decomposed into the mean of the components’ fourth cumulants and the fourth cumulant
of the components’ means, when the mixture’s components have the same second
and third cumulants. Statistical applications include robustness properties of likelihood-
based testing procedures and kurtosis-based projection methods. Practical relevance of
theoretical results in the paper are illustrated with two well-known data sets.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let x = (X1, . . . , Xd)
T be a d-dimensional random vector with mean µ = (µ1, . . . , µd)

T , covariance matrix Σ =

σij


and finite fourth-order moments: E
XiXjXhXk

 < +∞, for i, j, h, k = 1, . . . , d. The fourth cumulant K4 =

κijhk


of x is

the d-dimensional, symmetric tensor of order 4whose elements are the fourth-order derivatives of the cumulant generating
function of x: κijhk = log E


exp


ιtT x


/∂ti∂tj∂th∂tk, where ι =

√
−1 and tT = (t1, . . . , td). An equivalent representation

of κijhk is

E

(Xi − µi)


Xj − µj


(Xh − µh) (Xk − µk)


− σijσhk − σihσjk − σikσjh.

The elements κijhk might be arranged into the d2 × d2 block matrix κ4 (x) =

Mpq


, where Mpq = log E


exp


ιtT x


/

∂tp∂tq∂t∂tT for p, q = 1, . . . , d. The matrix κ4 (x) is the unfolded version of K4 (see, for example [41]) and can be
represented as

E

y ⊗ yT ⊗ y ⊗ yT


−

Id2 + Kd,d


(Σ ⊗ Σ) − vec (Σ) vecT (Σ) ,

where y = x − µ, ⊗ denotes the Kronecker product, vec (Σ) is the vectorization of Σ and Kd,d is the d2 × d2 commutation
matrix [25]. With a slight abuse of notation, we shall refer to the matrix κ4 (x) as to the fourth cumulant of x. Loperfido [23]
examines some spectral properties of κ4 (x).

In the general case, the number of distinct elements in κ4 (x) increases very quickly with the dimension of x. If x is
d- dimensional, κ4 (x) might contain up to d (d + 1) (d + 2) (d + 3) /24 distinct elements (see, for example, [16]). This
suggests that statistical applications of the fourth order cumulant might greatly benefit from its parsimonious modelling,
especially when they deal with multivariate kurtosis, as measured by functions of the fourth standardized cumulant. As a
first example, Mardia [27], Malkovich and Afifi [26], Henze [13] investigate different measures of multivariate kurtosis for
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testing the hypothesis of multivariate normality. As a second example, kurtosis is used in Independent Component Analysis
to recover the independent components themselves, when they are assumed to be leptokurtic (see, for example, [15]). As
a third example, likelihood-based procedures for testing hypotheses on covariance matrices might be very sensitive to the
kurtosis of the sampled distribution, when the latter is erroneously assumed to be multivariate normal [14,28,43,45].

Finite mixtures of multivariate distributions have often been used to achieve parsimonious modelling. Let F1, . . . , Fg be
d-dimensional cumulative distribution functions, and let π1, . . . , πg be nonnegative real numbers which add up to one. The
weighted average F = π1F1 + · · ·πgFg is said to be a finite mixture distribution (or model), whose i-th component and i-th
weight are Fi andπi, respectively. Letµi andΩi be themean and the variance of the i-thmixture’s component Fi, respectively,
for i = 1, . . . , g . It is well-known that the mixture’s mean µ, i.e. its first cumulant, is the mean of the components’ means.
It is also well-known that the mixture’s covariance Σ , i.e. its second cumulant, is the mean of the components’ covariances
plus the covariance of the components’ means. The above representations of the mean and the variance are appealing in
that they are easily expressed both in words and in matrix notation. Higher-order cumulants of finite mixture distributions
might be obtained via the law of total cumulance [5]. Unfortunately, it leads to results which are neither easily interpretable
nor admit simple representations in the matrix form, thus limiting their use in statistical modelling.

In recent years, finite mixtures of elliptical distributions with proportional scatter matrices have been used to explore
the statistical properties of kurtosis-basedmultivariate procedures. Projectionswhich eithermaximize orminimize kurtosis
have been used both in cluster analysis and in outlier detection [36–39]. In tensor terminology, theymight be regarded as the
best rank-one approximations to the fourth standardized cumulant. Tyler et al. [44] and Peña et al. [40] used a kurtosismatrix
independently introduced by Cardoso [7] and Mori et al. [34] to uncover several features of multivariate data. The same
matrix might be regarded as the sum of the d diagonal blocks of the fourth cumulant, which are d × d symmetric matrices
[19]. Both approaches have good statistical properties when sampling from a finite mixture of elliptical distributions with
proportional scatter matrices. At present time, however, no one investigated their robustness to violation of the underlying
assumptions, not even in the special case of a mixture of two multivariate normal distributions with the same variance.

This paper addresses the above mentioned problems within the framework of finite mixtures whose components have
identical second and third cumulants. They include several classes of well-known finite mixture models, most notably finite
mixtures of normal distributions with equal covariance matrices. McLachlan and Peel [32] report many applications of such
models and remark that often the component-covariances are restricted to being the same ([32], page 83). Their widespread
use is partly due to the little inferential problems they pose, compared to other finite normal mixtures [33]. An additional
advantage, from this paper’s perspective, is their very parsimonious modelling of the fourth cumulant. However, the class
of finite mixtures with equal second and third cumulants is much wider, since it also includes location mixtures. Skewness-
based projection pursuit might be helpful in detecting clusters, when the sampled distribution is a location mixture of
two multivariate, symmetric distributions [24]. Principal points of location mixtures of spherically symmetric distributions
have nice theoretical properties [20,30,31]. Section 3 in this paper discusses location mixtures of multivariate skew-normal
distributions.

We shall show that, when mixture’s components have identical second and third cumulants, the fourth cumulant of
the mixture equals the mean of the components’ fourth cumulants, plus the fourth cumulant of the components’ means.
Statistical applications deal with robustness of multivariate statistical procedures. First we shall assess the robustness of
MANOVA statistics when the data are drawn from a normal mixture with two homoscedastic components. Then we shall
use mixtures with two skew-normal components to assess the robustness of the kurtosis-based procedures proposed by
Peña and Prieto [36–39], Tyler et al. [44] and Peña et al. [40]. Other theorems in the paper, regarding fourth multivariate
cumulants and moments, are instrumental in proving the above results as well as being interesting in their own right.

The rest of the paper is organized as follows. Section 2 contains the main results. Section 3 discusses some statistical
applications. Section 4 illustrates their practical relevance with two well-known data sets. All proofs are deferred to the
Appendix.

2. Main results

The following theorem represents the fourth moment µ4 (x − c) of the difference x − c , where x is a d-dimensional
random vector and c is a real vector of the same dimension, as a function of the first four moments of x: µ = µ1 = E (x),
µ2 = E


xxT

, µ3 = E


x ⊗ xT ⊗ x


and µ4 = E


x ⊗ xT ⊗ x ⊗ xT


.

Theorem 1. Let µ1, µ2, µ3 , µ4 be the first, second, third and fourth moment of the d-dimensional random vector x. Then the
fourth moment of x − c, where c is a d-dimensional real vector, is

µ4 − µT
3 ⊗ c − µ3 ⊗ cT − cT ⊗ µ3 − c ⊗ µT

3 + µ2 ⊗ ccT + vec (µ2) ⊗ cT ⊗ cT

+ Kd,d

ccT ⊗ µ2


+ Kd,d


µ2 ⊗ ccT


+ c ⊗ c ⊗ vecT (µ2) + ccT ⊗ µ2

− µ1cT ⊗ ccT − cµT
1 ⊗ ccT − ccT ⊗ µ1cT − ccT ⊗ cµT

1 + ccT ⊗ ccT .

As a direct consequence, the fourth central moment of a random vector might be represented via the first noncentral
moments of the vector itself. More precisely, let µ1, µ2, µ3 , µ4 be the first, second, third and fourth moment of the d-
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