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a b s t r a c t

Directional regression is an effective sufficient dimension reductionmethodwhich implic-
itly synthesizes the first two conditional moments. In this paper, we extend directional
regression to a general family of estimators via the notion of general empirical directions.
Data-driven method is used to identify the optimal estimator within this family. Based on
the proposed general directional regression estimators, we develop a newmethodology for
nonlinear dimension reduction. Improvement of general directional regression over clas-
sical directional regression is demonstrated via simulation studies and an empirical study
with the wine recognition data.
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1. Introduction

Sufficient dimension reduction aims at reducing the dimension of the predictors while keeping all the relevant infor-
mation for regression or classification. Let X be a p-dimensional predictor and Y be a 1-dimensional response. Sufficient
dimension reduction seeks β ∈ Rp×d with d ≤ p, such that

YyX|βTX, (1)
that is, Y is independent of X conditioning on βTX. The column space of β, or Span(β), is called a dimension reduction space
if β satisfies (1). Under mild assumptions [1,21] the intersection of all dimension reduction spaces is still a dimension re-
duction space, which is called the central space and denoted by SY |X [2]. The dimension d of SY |X is known as the structural
dimension. Since the seminar paper of sliced inverse regression [9], various methods have been proposed tomake inference
about the central space, which, among others, include sliced average variance estimation [5], principle Hessian directions
[10,3], contour regression [14] and directional regression [13]. Sliced inverse regression and sliced average variance estima-
tion are among the most popular sufficient dimension reduction methods. Without knowing the true link function between
the predictor and the response, both methods rely on assumptions about the marginal distribution of the predictor X. For β
such that Span(β) = SY |X, sliced inverse regression requires that

E(X|βTX) is a linear function of βTX, (2)
which is known as the linear conditional mean assumption. Sliced average variance estimation requires the additional con-
stant conditional variance assumption

Var(X|βTX) is a nonrandommatrix. (3)
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When X is multivariate normal, both assumptions (2) and (3) are satisfied. For unknown β in practice, transformation or
reweighting [4] can be applied to the predictor such that the above two assumptions are satisfied for all β ∈ Rp×d. Recent
work of central solution space [12,7] proposes to model E(X|βTX) as a nonlinear function of βTX when the assumption (2)
is not satisfied.

Sliced inverse regression is known as a first-order method as it involves inverse conditional mean E(X|Y ). Inverse
conditional variance Var(X|Y ), on the other hand, is utilized for the second-ordermethod sliced average variance estimation.
Sliced inverse regression and sliced average variance estimation are complement to each other in both the regression and
the classification settings. In regression, sliced inverse regressionworks better when the link function between the response
and the predictor is linear or close to linear, while the sliced average variance estimation ismore effectivewithU-shaped link
functions. For classification problems, the sliced inverse regression is better at detecting the differences in the groupmeans,
while the sliced average variance estimation ismore effective in detecting the differences in the group variances. To combine
the strength of thesemethods, both direct and indirect combinations of sliced inverse regression and sliced average variance
estimation have been proposed in the literature. Convex combination methods are discussed in [20,24]. To implicitly
synthesize sliced inverse regression and sliced average variance estimation, [13] proposed the directional regression, which
is shown to enjoy the best overall performance across awide range ofmodels compared to the convex combinationmethods.
Directional regression is also appealing as it can estimate the central space exhaustively under very mild conditions.

One limitation of directional regression, however, is that it is not guaranteed to improve the sliced inverse regression or
sliced average variance estimation. For example, directional regression may be outperformed by sliced inverse regression
in the regression setting with a strong linear trend, or in the classification setting with a significant difference in the group
means. Similarly, directional regressionmay be outperformed by sliced average variance estimationwhen the setting favors
the latter. In this paper, we extend directional regression to a family of new sufficient dimension reduction estimators, which
include sliced inverse regression and directional regression as special cases. Our estimators naturally synthesize information
fromboth first-ordermoments and second-ordermoments. The proposed family of central space estimators inherits the nice
theoretical properties of directional regression, such as exhaustiveness and

√
n-consistency.

A natural question is how to identify the optimal estimator or at least an estimator close to the optimal one within this
family. For continuous response,we follow the idea of [20], and use bootstrap to choose an optimal estimatorwithin the gen-
eral directional regression family. For discrete response, we pair each estimator in the proposed family with support vector
machine to get a classification rule. The best classification rule, or the rule with the smallest testing error rate, corresponds
to our chosen optimal estimator within the family. Our simulation results show that the chosen estimator improves over
sliced inverse regression, sliced average variance estimation and directional regression consistently, and performs similarly
to the oracle classifier which is based on the true underlying predictor.

Two practical issues about general directional regression are also addressed in this paper. Sequential test is oftentimes
used in the dimension reduction literature to determine the unknown structural dimension d. Following [6], we adapt the
permutation test to the setting of general directional regression. Classical sufficient dimension reduction aims at finding
linear combinations of the original predictors. In the case when we are interested in finding nonlinear features, we use the
‘‘kernel trick’’ and develop the nonlinear version of general direction regression.

The rest of the paper is organized as follows. In Section 2, we introduce the idea of general directional regression via
the notion of general empirical directions. We study the sample level estimation and asymptotic properties of the proposed
estimators in Section 3. Section 4 discusses the permutation test to determine the unknown structural dimension. Nonlin-
ear dimension reduction via general directional regression is discussed in Section 5. Simulation studies are performed in
Section 6, where we use data-driven methods to choose an estimator within the proposed general directional regression
family. Section 7 provides an empirical studywith the wine recognition data.We conclude this paper with a brief discussion
in Section 8. All the technical proofs are given in the Appendix.

2. General directional regression

In this section, we propose a family of general directional regression estimators. It is demonstrated that the proposed
estimators can estimate the central space exhaustively under mild assumptions. A reparameterization is also provided for
easier implementation in later sections.

2.1. Population level development

Denote µ = E(X) and Σ = Var(X). Then Z = Σ−1/2(X − µ) is the standardized predictor. The relationship between
the Z-scale and the X-scale central spaces is captured by SY |X = Σ−1/2SY |Z, which is known as the invariance law. Let (Z̃, Ỹ )
be an independent copy of (Z, Y ). The main idea behind directional regression is to explore the directional information
contained in A0(Y , Ỹ ) = E{(Z − Z̃)(Z − Z̃)T |Y , Ỹ }. It is shown in [13] that Span{2Ip − A0(Y , Ỹ )} ⊆ SY |Z.

Without loss of generality, we assume E(X) = 0 hereafter. Given (Xi, Yi), i = 1, . . . , n, as a random sample of (X, Y ),
we define the set of vectors {Xi − cXj : 1 ≤ i < j ≤ n} to be general empirical directions with c > 0. This is a natural
extension of the empirical directions introduced by [14], which are the set of vectors {Xi − Xj : 1 ≤ i < j ≤ n}. Let (X̃, Ỹ )
be an independent copy of (X, Y ). Our idea is to regress general empirical directions onto (Y , Ỹ ). For constants a > 0, b > 0
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