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a b s t r a c t

Let {Xk, k ∈ Z} be a zero mean causal AR(∞) process with parameter Θ ∈ R∞. A very
common fitting procedure is to employ the Yule–Walker equations in connection with the
Durbin–Levinson algorithm, which yields the (recursive) sequence of estimators Θm :=

(θm,1, . . . ,θm,m)⊤, m = 1, 2, . . . .. Under mild conditions, simultaneous confidence bands
for Θm, Θm+1, . . . are derived. More precisely, it is shown that maxdn−κn≤m≤dn max1≤h≤mθm,h − θh

 converges to an extreme value distribution, where dn = O

nδ

, δ > 0, and n

denotes the sample size. The relation of κn and dn depends on the bias term


∞

i=dn−2κn |θi|.
This significantly extends a recent result in Jirak (2012). Moreover, extensions of results
of An et al. (1982) and Bhansali (1978) are obtained. In addition, the behavior of Information
criteria in the AR(∞) setting is briefly discussed.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let

Xk

k∈Z be a stationary q-th order autoregressive process AR(q) with coefficient vector Θq ∈ Rq, i.e., we have that

Xk+1 =

q
i=1

θiXk+1−i + ϵk+1, (1.1)

where

ϵk

k∈Z is a zero mean IID-sequence with E


ϵ2k


= σ 2. When fitting such an AR(q) model, one usually chooses some
order selection procedure for the order q, and an estimation method for the coefficients Θq. A considerable literature has
evolved around these two issues, early pioneering contributions are due to Akaike [1,2], Mallows [33,34], Walker [45] and
Yule [50], for more details see for instance [5,10,13,25,20,32]. Some of these approaches and related questions have then
been further developed in [18,42,21,38,40,44], in particular the issue of order estimation has received considerable attention.
Many of these methods are linked, in some way or other, to the confidence ellipsoids

M1(m) =


Θm ∈ Rm

 Θm − Θm
⊤Γm

Θm − Θm


≤ n−1σ 2
mχ

2
1−α(m)


, (1.2)

where χ1−α
2(m) denotes the (1 − α) quantile of the chi-square distribution with m degrees of freedom (cf. [5,13,20]), n

denotes the number of observed realizations Xk, 1 ≤ k ≤ n, andΓm,σ 2
m are estimators for the covariance matrix Γm and σ 2.

One of the drawbacks of (1.2) is that it does not provide very useful inference for the single components
θi − θi


1≤i≤dn

.
Recently, in [30] a different confidence band was discussed,

M2(dn) =


Θdn ∈ Rdn

 a−1
n


n1/2 max

1≤i≤dn

(γ ∗

i,i)
−1/2(θi − θi)

− bn


≤

σ 2
dnV1−α


, (1.3)
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where V1−α denotes the 1 − α quantile of a Gumbel-type distribution, and dn increases with the sample size n (for the
definition of an, bn, dn, γ ∗

i,i see Theorem 2.6). Clearly, M2(dn) provides more accessible (and tighter) bounds for the single
elements

θi − θi


1≤i≤dn
when compared to M1(dn). This is for instance an important issue for so-called subset models,

where one is interested in determining subsets I of significant parameters θi, i ∈ I, and insignificant θj, j ∈ J. For more
details on this subject, see [37,12,35,36,23] and the references therein. Moreover, as pointed out in [30], M2(dn) is also very
useful for order selection in sparse models.

However, the setup in [30] and also the confidence band M2(dn) itself suffer from two serious deficits. The first concerns
the assumption of an underlying AR(dn) process in [30]. As pointed out for instance by Burnham and Anderson [15], (see
also [16]), it is more reasonable to assume that the data originates from an AR(∞) process. This is fueled by the fact that in
many cases, an approximation with ‘relatively’ large lags provides superior results in prediction, see for instance [9,27,28,
26,43,46] and the references therein. Thereby, the assumption of an AR(dn) process should be replaced by the assumption
of an underlying AR(∞) process.

The second major concern regards the applicability of M2(dn) in practice, and was already pointed out in [30, Section 3].
Let us briefly elaborate on this particular issue. From an asymptotic point of view, it is enough to choose a large enough dn,
and then use M2(dn) to decide upon the redundance of single parameters θi and the order of the process


Xk

k∈Z. As stated

in [30], this essentially boils down to ‘just using the equation’Θdn = Γ −1
dn
Φdn , (1.4)

whereΦdn denotes an estimate for the covariance vectorΦdn . However, the notion of sufficiently large dn is difficult to handle
in practice. Moreover, for large dn, Eq. (1.4) may be numerically unstable due to the estimated inverse of the covariance
matrix Γ dn . This is a well-established fact in the literature (cf. [2,13,21,20,22]), and therefore usually all related estimators
are computed in a sequential manner in practice (cf. [13,6,21,20,5]). For example, the successive values of Information criteria
such as the AIC or BIC are normally based on the successive estimates Θm = (θm,1, . . . ,θm,m)⊤, m = 1, 2, . . . ., and not the
values (θdn,1, . . . ,θdn,m)⊤,m ≤ dn. Simply computing Θdn once for sufficiently large dn and then using this particular vector
to compute the AIC or BIC normally leads to significantly inferior results and cannot be advised. For the same reason, the
usage of M3(dn) was advocated in [30, Section 3] in practice, which is the sequential analogue of M2(dn), and can be defined
as

M3(dn) =


Θdn ∈ Rdn

 a−1
n


√
n max

dn−κn≤m≤dn
max
1≤h≤m

(σ 2
mγ ∗

h,h)
−1/2

θm,h − θh
− bn


≤ V1−α


,

where an, bn and V1−α are as in M2(dn). As our small simulation study in Section 4 shows, applying a sequential procedure
relying on M3(dn) indeed gives substantially better results.

However, so far the theoretical justification for the actual usage ofM3(dn) (i.e., whether or not the quantiles V1−α actually
fit) has not yet been established, and indeed this turns out to be far from trivial. Note that in M2(dn), the maximum is
taken over dn random variables. This is reflected in the normalizing sequences an, bn, particularly in the centering sequence
bn =

√
2 log dn, which mainly determines the growth rate of M2(dn). Contrary, in M3(dn), the number of involved random

variables can be Cd2n, C > 0, hence one may expect a centering sequence bn =
√
4 log dn, thus an increase with factor

√
2.

However, it turns out that the centering sequence bn remains the same, i.e., bn =
√
2 log dn (in fact bn =

√
2 log κn). Clearly,

this is not only a theoretical issue, since it tells us that the quantiles used for inference do not need to be amplified by the
factor

√
2 in practice.

To the best of my knowledge, the only result in this direction was established by An et al. in [4], who proved a LIL-like
behavior in case of ARMA(p, q) processes and dn = O


(log n)δ


, δ > 0, see (2.6) for more details. The aim of this paper is to

study the asymptotic behavior of M3(dn), thereby justifying its applicability. In doing so, we will also substantially extend
the result of An et al.; stated in (2.6). Further, we also give an extension of a result of Bhansali [7] regarding the central limit
theorem for

√
n
Θdn − Θdn


. In addition, the behavior of Information criteria in the AR(∞) setting is briefly discussed.

This paper is structured as follows. In Section 2 the main results are presented alongside some comments on the
underlying assumptions. Further ramifications and comparisons to related results in the literature are given in Section 3.
A simple simulation study to highlight the usage of M3(dn) is given in Section 4. Section 5 contains the proofs of the
main results, the proofs of important technical lemmas are relegated to Section 6. Auxiliary results are provided in
Section 7.

2. Main results

To state the results, we need to introduce some notation and specify the setting.Wewill always assume that we are given
a sample Xk, 1 ≤ k ≤ n of size n, where


Xk

k∈Z is a zero mean AR(∞) process given as in (1.1) with q = ∞. Note that in

the literature one also encounters the notion Xk+1 + ψ1Xk + · · · + ψjXk−j+1 + · · ·+ = ϵk+1, which amounts to ψi = −θi.
Based on (1.1), we define the associated polynomial

Θz = 1 −

∞
j=1

θjz j. (2.1)
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