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a b s t r a c t

Functional data are infinite-dimensional statistical objects which pose significant chal-
lenges to both theorists and practitioners. Both parametric and nonparametric regressions
have received attention in the functional data analysis literature. However, the former im-
poses stringent constraints while the latter suffers from logarithmic convergence rates. In
this article,we consider twopopular sufficient dimension reductionmethods in the context
of functional data analysis, which, if desired, can be combined with low-dimensional non-
parametric regression in a later step. In computation, predictor processes and index vectors
are approximated in finite dimensional spaces using the series expansion approach. In the-
ory, the basis used can be either fixed or estimated, which include both functional principal
components andB-spline basis. Thus our study ismore general thanprevious ones. Numeri-
cal results from simulations and a real data analysis are presented to illustrate themethods.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

There has recently been increased interest in the statistical modeling of functional data. In many experiments, functional
data appear as the basic unit of observations. As a natural extension of themultivariate data analysis, functional data analysis
provides valuable insights into these problems. Compared with the discrete multivariate analysis, functional analysis takes
into account the smoothness of the high dimensional covariates, and often suggests new approaches to the problems that
have not been discovered before. Even for nonfunctional data, the functional approach can often offer new perspectives on
the old problem.

The literature contains an impressive range of functional analysis tools for various problems including exploratory func-
tional principal component analysis, canonical correlation analysis, classification and regression. Two major approaches
exist. The more traditional approach, masterfully documented in the monograph [29], typically starts by representing func-
tional data by an expansion with respect to a certain basis, and subsequent inferences are carried out on the coefficients.
The most commonly utilized basis include B-spline basis for nonperiodic data and Fourier basis for periodic data. Another
line of work by the French school [16], taking a nonparametric point of view, extends the traditional nonparametric tech-
niques, most notably the kernel estimate, to the functional case. Some recent advances in the area of functional regression
include Cardot et al. [5]; Cai and Hall [4]; Aneiros-Perez and Vieu [3]; Preda [28]; Ait-Saidi et al. [2]; Aguilera et al. [1]; Wong
et al. [30]; Yao et al. [32]; Ait-Saidi et al. [2]; Crambes et al. [13].

As an extension of classical linear regression, parametric functional linear regression has achieved exclaimed success
in many real problems, although it can be argued that the structural constraint is too stringent. On the other hand,

∗ Corresponding author.
E-mail address: henglian@ntu.edu.sg (H. Lian).

0047-259X/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmva.2013.10.019

http://dx.doi.org/10.1016/j.jmva.2013.10.019
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2013.10.019&domain=pdf
mailto:henglian@ntu.edu.sg
http://dx.doi.org/10.1016/j.jmva.2013.10.019


H. Lian, G. Li / Journal of Multivariate Analysis 124 (2014) 150–165 151

nonparametric functional regression is more flexible but typically suffers from poor convergence rate [17]. To address these
problems, Chen et al. [6] studied functional single-index and multiple-index models.

Herewe consider an alternative semiparametric approach based on sufficient dimension reduction. In functional context,
we assume

Y = g(⟨β1, X⟩, . . . , ⟨βK , X⟩, ϵ), (1)

where ⟨, ⟩ is the usual inner product in L2[0, 1]. Thus the response Y only depends on the predictor through K indices
obtained by projecting onto K directions. Since g is unknown, the K directions, referred to as dimension reduction directions,
are not identifiable. In the multivariate case, the space spanned by them (referred to as a dimension reduction subspace, or
drs) is identifiable under mild assumptions, however such assumptions are not known in the functional context yet. Thus
we will not use the concept of the central space which is popularly used in the dimension reduction literature [7,34]. The
reason is that for functional data there is no corresponding theory for the existence and uniqueness of the central space. This
may be due to that density for functional data is a tricky concept to work with. In the literature of functional SIR, researchers
typically work with a drs, even though there might be multiple drs’s. Although a unique drs is generally not identifiable,
useful methodology is still possible. The approach of dimension reduction is particularly useful in an exploratory stage of
statistical analysis since very few structural assumptions are imposed in (1). In particular, it is not necessary to assume the
different indices act additively as usually assumed in multiple-index models, and the error also is not necessarily additive
onmean, or homogeneous. After the dimension reduction directions are found, in particular if there are only a small number
of significant directions, one can use traditional nonparametric approaches to study the relationships between responses
and the few indices. This second stage typically involves additional structural assumptions such as additive errors.

There exist quite a few different methods aimed at estimating the dimension reduction space [24,12,25,37,38]. Among
these sliced inverse regression (SIR) and sliced average variance estimation (SAVE) are probably the most popular. Both
required linearity assumption of the predictors. However, SIR will fail when E[X |Y ] = 0 which motivated the use of SAVE.
On the other hand, SAVE requires an additional assumption on the distribution of predictors.

Adapting SIR to functional context has been proposed in [18] based on functional principal component analysis on the
random predictor process. In particular the predictor process is approximated by a truncation of the Karhunen–Loève
expansion, using the eigenfunctions as the basis. The basic procedure is to (i) approximate the functional predictors
with series expansion using certain basis and obtain the coefficients; (ii) perform dimension reduction using the finite-
dimensional coefficients as the predictors; (iii) use directions obtained in (ii) as the coefficients of the basis to finally obtain
the direction in functional space. It turns out this computational procedure is correct only when the basis is orthonormal,
and we will detail the general algorithm in Section 4.

In terms of theory, Ferré and Yao [18] assumes that the number of slices is fixed which works well for discrete responses,
but is only an approximation for continuous responses. On the other hand, the kernel estimate used in [19] was later shown
to require much stronger assumptions [9].

Our contributions in this study are summarized as follows. First, our theory for SIR allows various basis systems, either
fixed in advanced or estimated from data. Second, our theory works for both categorical and continuous response Y . Third
and most importantly, we extend SAVE to the functional context which has not been considered before.

2. SIR and SAVE

Let Y be a real random response and X ∈ L2[0, 1] the random functional predictor. In this article, we assume the en-
tire trajectory of noise-free process X is observed. When the process is densely measured, this is a reasonable assumption.
For simplicity, we assume EX = 0. We also assume the fourth moment of X exists, that is E∥X∥

4 < ∞. The (population)
covariance operator of X is given by Γ = E(X ⊗ X), where for any x, y ∈ L2[0, 1], x ⊗ y denotes the linear operator
L2[0, 1] → L2[0, 1] such that (x ⊗ y)(z) = ⟨x, z⟩y. Using the well-known Karhunen–Loève expansion, we can write

X =

∞
j=1

ξjφj,

where Eξ 2
j = λj are the eigenvalues and φj are the eigenfunctions. We assume all the eigenvalues, λ1 > λ2 > · · · > 0 are

distinct and positive, as usually assumed in the functional data literature [22,18]. If some eigenvalues are zero, the compo-
nents of βk in the kernel space of Γ cannot be identified. We focus on the estimation of the space spanned by K linearly
independent directions β1, . . . , βK , which is called a dimension reduction subspace (drs) and denoted by S. Let Γ S be the
space spanned by Γ β1, . . . , Γ βK .

Let BX = (⟨β1, X⟩, . . . , ⟨βK , X⟩). The principle of SIR and SAVE is based on the following result with proofs omitted,
which is a direct extension of the multivariate case.

Theorem 1. (a) [18] Suppose for all b ∈ L2[0, 1], the conditional expectation E(⟨b, X⟩|BX ) is linear in ⟨β1, X⟩, . . . , ⟨βK , X⟩. Then
E(X |Y ) ∈ Γ S. Obviously, if the linearity assumption is true for all drs’s, then E(X |Y ) ∈ Γ (∩S is a drs S). Note that generally,
∩S is a drs S is not guaranteed to be a drs, but s spanning system for the intersection may still be useful in practice.
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