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a b s t r a c t

The growth curve model is a useful tool for studying the growth problems, repeated mea-
surements and longitudinal data. A key point using the growth curvemodel to fit data is de-
termining the degree of polynomial profile form, choosing suitable explanatory variables,
shrinking some regression coefficients to zero and estimating nonzero regression coeffi-
cients. In this paper,wepropose a three-level variable selection approachbased onweighed
least squares with group SCAD penalty to handle the aforementioned problems. Consider-
ing the rows and columns of regression coefficientmatrix as groupswith overlap to control
the polynomial order and variables, respectively, our proposed procedure enables us to si-
multaneously determine the degree of polynomial profile, identify the significant explana-
tory variables and estimate the nonzero regression coefficients.With appropriate selection
of the tuning parameters, we establish the oracle property of the procedure and the con-
sistency of the proposed estimation. We investigate the finite sample performances of our
procedure in simulation studies whose results are very supportive, and also analyze a real
data set to illustrate the usefulness of our procedure.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A growth curve model was first summarized by Potthoff and Roy [21], and studied subsequently by many authors
including [9,12,14,16,17,19,22,25]. It is already shown to be very useful, particularly for studying growth problems on short
time series, repeated observations oftenmeasured over multiple time points on a particular characteristic to investigate the
temporal pattern of change on the characteristic [4] and longitudinal data especially with serial correlation [15] in a variety
of scientific disciplines, such as medical research, biology, economics, education, forestry and so on. The interested reader
can refer to [18,20] for a more detailed discussion and illustration of the usefulness of the growth curve model.

The basic idea of the growth curve model is to introduce some known functions, usually polynomial functions, so as to
capture patterns of change for time-dependent measurements. In data analysis, the degree of polynomial profile is often
unknown. This allows the possibility of selecting an underfitted (or overfitted) model, leading to biased (or inefficient)
estimators and predictions. Meanwhile, if there are too many explanatory variables which are not important, we need to
choose suitable explanatory variables for efficiency and accuracy. Therefore, a key point using the growth curve model to
fit the data is simultaneously determining the degree of polynomial profile form, selecting suitable explanatory variables,
choosing zero regression coefficients and estimating the nonzero regression coefficients.

Usually, a growth curve model can be written as

Y = XΘZτ
+ E (1.1)
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where Y is the observation matrix of the response consisting of p repeated measurements taken on n individuals, X is the
treatment designmatrixwith ordern×m, Z is the profilematrixwith order p×q, andΘ is the unknown regression coefficient
matrix with order m × q. Assume that observations on individuals are independent, so that the rows of the random error
matrix E are independent and identically distributed by a distribution with mean zero and covariance matrix Σ .

The treatment design matrix X discussed in this paper is assumed to comprise of intercept items and explanatory
variables. The explanatory variables themselves may be continuous or categorical. Data sets with continuous explanatory
variables often appear in real statistical problems. For example, in the problem considering children’s reading recognition,
cognitive stimulation and emotional support for children at home will be possible explanatory variables which may be
continuous.

Several authors have investigated the problem of determining the degree of polynomial profile form in the model (1.1).
Fujikoshi and Rao [8] considered the one of selecting the covariables in the growth curve model, but did not consider the
problem of selecting the degree of freedom. Satoh et al. [23] treated determination of the degree of a polynomial growth
curve as a problem of variable selection. They proposed the corresponding Cp and AIC for the situation where thematrix X is
a design matrix across individuals onm groups. Here it is not necessary to select the columns of X though the criteria in [23]
is also used to determinate the degree of polynomial profile and select the explanatory variables simultaneously.

It is well known that the traditional variable selections such as Cp, AIC and Bayesian information criterion (BIC) do not
shrink the regression coefficients to zero. This results in the accuracy of the regression coefficient estimators in the final
model being somewhat difficult to understand.

To overcome the limitation, we consider an alternativemethod, to the traditional best subset variable selections, that can
simultaneously estimate regression coefficients and shrink some regression coefficients to zero, thereby, removing them
from the final model. For linear regression models, Fan and Li [6] novelly proposed a family of variable selection procedures
by the smoothly clipped absolute deviation penalty (SCAD). They showed that the proposed method outperforms the best
subset variable selection in terms of computational cost and stability. An attractive feature of it is thatwith a proper choice of
regularization parameters, the resulting estimator possesses an oracle property, namely, the true zero regression coefficients
are automatically estimated as zero, and the remaining coefficients are estimated as well as if the correct submodel were
known in advance.

To simultaneously choose the degree of polynomial profile and explanatory variables, we shall propose a three-level vari-
able selection procedure based on group SCAD penalty and weighed least squares so that we can simultaneously determine
the order of polynomial profile form, identify the significant explanatory variables, shrink some regression coefficients to
zero and estimate nonzero regression coefficients.

Our contributions are to divide the rows and columns of regression parametric matrix in the model (1.1) into column
and row groups with a special overlap, discover the equivalent relationships between row group and variable selection and
between column group and determine of the order of polynomial profile form, then use a smoothly clipped absolute devia-
tion penalty function to penalize row groups, column groups and regression coefficients, and finally minimize the penalized
(weighted) least squares with three-level SCAD penalty to lead to a penalized (weighted) least squares estimator of the re-
gression parametricmatrix. It will be shown that the oracle property of the procedures and the consistency of the estimation
can be achieved under an appropriate selection of the tuning parameters. Our results indicate that our proposed procedure
outperforms the best subset selection and the method that SCAD is directly applied to the vector version of model (1.1).

The rest of this paper is as follows. A least squares estimation via a group SCAD penalty with a special overlap is proposed
in Section 2. The estimation of the error covariance matrix is provided in Section 3. Based on the estimated covariance,
we proposed a three-level variable selection procedure via weighted least squares estimation with a group SCAD penalty
in Section 4. The selection of the tuning parameters is discussed in Section 5. Some simulation studies are conducted in
Section 6. One practical problem, which can be characterized by the model (1.1), is illustrated in Section 7. Finally, the brief
concluding remarks are stated in Section 8. The proof of the main results are collected in the Appendix.

2. Least squares estimation with group SCAD penalty

For convenience of notation, we write Θ into Θ = (Θij)2×2 with Θ11 am0 × q0 matrix. Here q0(≤ q) is the true degree of
polynomial profile form andm0(≤ m) is the true number of explanatory variables. Let θ·j denote the jth (1 ≤ j ≤ q) column
of matrix Θ and θi· denote the ith (1 ≤ i ≤ m) row of matrix Θ . There is anm0q0 ×m0q0 elementary transformation matrix
L0 = (L10, L20) such that vec(Θ11) = L10β10 + L20β20, where β10 is a d0-dimensional vector with each element nonzero and
β20 = 0. The following is an example with

Θ11 =


θ11 0
0 θ22

θ31 θ32


, L10 =


1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , L20 =


0 0
1 0
0 1
0 0
0 0
0 0

 , β10 =

θ11
θ22
θ31
θ32

 , β20 =


0
0


.

Here the vec operator transforms a matrix into a vector by stacking the rows of the matrix one under another.
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