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a b s t r a c t

Bayesian networks (BNs) have become an essential tool for reasoning under uncertainty
in complex models. In particular, the subclass of Gaussian Bayesian networks (GBNs)
can be used to model continuous variables with Gaussian distributions. Here we focus
on the task of learning GBNs from data. Factorization of the multivariate Gaussian
joint density according to a directed acyclic graph (DAG) provides an alternative and
interchangeable representation of a GBN by using the Gaussian conditional univariate
densities of each variable given its parents in the DAG. With this latter conditional
specification of a GBN, the learning process involves determination of the mean vector,
regression coefficients and conditional variances parameters. Some approaches have been
proposed to learn these parameters from a Bayesian perspective using different priors,
and therefore some hyperparameter values are tuned. Our goal is to deal with the usual
prior distributions given by the normal/inverse gamma form and to evaluate the effect of
prior hyperparameter choice on the posterior distribution. As usual in Bayesian robustness,
a large class of priors expressed by many hyperparameter values should lead to a small
collection of posteriors. From this perspective and using Kullback–Leibler divergence to
measure prior and posterior deviations, a local sensitivity measure is proposed to make
comparisons. If a robust Bayesian analysis is developed by studying the sensitivity of
Bayesian answers to uncertain inputs, this method will also be useful for selecting robust
hyperparameter values.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks (BNs) are graphical probabilistic models of interactions between a set of variables for which the
joint probability distribution can be described in graphical terms. BNs consist of qualitative and quantitative parts (G, P ).
The qualitative part, G, comprises a directed acyclic graph (DAG) useful for defining dependence and independence
among variables X = {X1, . . . , Xp}. The DAG shows the set of variables of the model at nodes, and the presence of
arcs represents the dependence between variables. In the quantitative part, P , it is necessary to determine the set of
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parameters that describes the conditional probability distribution of each variable, given its parents in the DAG, to compute
the joint probability distribution of the model as a factorization. Then, the set P defines the associated joint probability
distribution

P(X) =

p
i=1

P(Xi|pa(Xi))

with P = {P(X1|pa(X1)), . . . , P(Xp|pa(Xp))}.
Among others, BNs have been studied by Pearl [15], Lauritzen [14], Cowell et al. [3] and Jensen et al. [12].
In this work, we focus on a subclass of BNs known as Gaussian Bayesian networks (GBNs). GBNs have been treated by

authors like Shachter, et al. [17], Castillo, et al. [1,2], Dobra, et al. [6] and Cowell, et al. [3].
GBNs are defined as BNs for which the probability density of X = (X1, . . . , Xp)

′ is a multivariate normal distribution
Np(µ, Σ), where µ is the p-dimensional mean vector and Σ is a p × p positive definite covariance matrix for which the
dependence structure is shown in a DAG. Then the joint density can be factorized using the conditional probability densities
for every Xi (i = 1, . . . , p) given its parents in the DAG, pa(Xi) ⊂ {X1, . . . , Xi−1}. These are univariate normal distributions
with density

f (xi|pa(Xi)) ∼ N1


xi|µi +

i−1
j=1

βji(xj − µj), vi


,

whereµi themean of Xi, βji are the regression coefficients of Xi with respect to Xj ∈ pa(Xi), and vi is the conditional variance
of Xi given its parents. Remark that the presence of arcs represents the dependence between variables, therefore βji = 0 if
and only if there is no link from Xj to Xi, with j < i.

The conditional and joint specifications of a GBN are interchangeable and we can work equivalently with both
parameterizations considering 6 = [(I − B)−1

]
′D(I − B)−1 [17], where D is the diagonal matrix D = diag(v) with the

conditional variances v′
= (v1, . . . , vp) and B is a strictly upper triangular matrix with the regression coefficients βji with

j = 1, . . . , i − 1.
The problems of learning both sets of parameters are also equivalent if some particular prior distributions are

used.
In general, building a BN is a difficult task because it requires the user to specify the quantitative and qualitative parts of

the network. Expert knowledge is important for fixing the dependence structure between the variables of the network and
for determining a large set of parameters. In this process, it is possible to work with a database of cases, but the experience
and knowledge of experts is also necessary. In GBNs the conditional specification of the model is manageable for experts,
because they only have to describe univariate distributions. Then for each Xi variable (node i in the DAG) it is necessary to
specify the mean, the regression coefficients between Xi and each parent Xj ∈ pa(Xi), and the conditional variance of Xi
given its parents.

Literature about sensitivity analysis in GBNs is not extensive. Authors like Castillo & Kjærulff [2] or Gómez-Villegas
et al. [8–10], have studied the problem of uncertainty in parameters assignments in GBNs. Castillo & Kjærulff [2] performed a
one-way sensitivity analysis to investigate the impact of small changes in the network parameters, µ and Σ, by computing
partial derivatives of output probability of interest with respect to inaccurate parameters. A local sensitivity analysis is
developed to evaluate small changes in the parameters. Gómez-Villegas et al. [8] proposed a one-way sensitivity analysis
to evaluate the impact of small and large changes in the parameters over the network’s output. Then, a global sensitivity
measure is proposed to study the discrepancy of the output distribution of interest between two models, the initial and a
perturbed model. Both analyses deal with variations in one parameter at a time holding the others fixed. Then, both are
one-way sensitivity analyses.

As a generalization of the latter approach, Gómez-Villegas et al. [10] presented an n-way sensitivity analysis to evaluate
uncertainty about a set of parameters.

Our objective here is to investigate uncertainty about the parameters of the conditional specification. To achieve this, we
study the effect of different values for the prior hyperparameters on the posterior distribution.

The problem of Bayesian learning in this context has been handled with different approximations [6,7]. We work with
the most commonly used, the normal/inverse gamma prior.

We study the effect of hyperparameter selection using Kullback–Leibler (KL) divergence [13]. This measure is used to
define an appropriate local sensitivity measure to compare small prior and posterior deviations. From the results obtained
it is possible to decide the values to chose for the hyperparameters considered.

The remainder of the paper is organized as follows. Section 2 introduces the problem assessment and the distributions
considered. Section 3 is devoted to calculation of KL divergence measures. A local sensitivity measure is introduced in
Section 4. Section 5 includes some examples and conclusions are drawn in Section 6.
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