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HIGHLIGHTS

We consider a class of complex elliptically contoured matrix distributions (ECD).

We investigate properties of the likelihood ratio (LR).

We derive stochastic representations of the LR for covariance matrix estimation (CME).
Its p.d.f. evaluated at the true CM Ry does not depend on the latter.

This extends the expected likelihood approach for regularized CME.
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1. Introduction and problem statement

The expected likelihood (EL) approach was introduced and developed in [3-5] as a statistical tool to assess the quality of
a covariance matrix estimate R from observation of a M x T matrix variate X. The EL approach relies on some invariance
properties of the likelihood ratio (LR) for testing Hy : €{XX"} = R against the alternative &{XX"} = R. More precisely, the
LR is given by
p(X|R) p(XIR)

[R(R|X) = = : (M
m'?xp(le) P(X|Rm)
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where p(X|R) stands for the probability density function (p.d.f.) of the observations (which are assumed to be zero-mean)
and Ry, denotes the maximum likelihood estimator (MLE) of R. As demonstrated in [3-5] for Gaussian distributed data, the
p.d.f of LR(Ry|X), where Ry is the true covariance matrix of X, does not depend on Ry but is fully determined by M and T.
Moreover, the effective support of this p.d.f. lies on an interval whose values are much below 1 = LR(Ryy |X), see [3-5] for
illustrative examples. In other words, the LR evaluated at the true covariance matrix is much lower than the LR evaluated

at the MLE. This naturally raises the question of whether it would not make more sense that an estimate R(B) of Ry, where
R(p) is either a parameterized model for the covariance matrix or a regularized estimate (e.g., shrinkage of the MLE to some
target covariance matrix), results in a LR which is commensurate with that of Ry. This is the gist of the EL approach which

estimates 8 by enforcing that LR(R(}§)|X) takes values which are compatible with the support of the p.d.f. of LR(Ry|X). To
be more specific, let us consider a classical regularized covariance matrix estimate (CME) based on shrinkage of the MLE to
a target matrix Ry, i.e.,

R(B) = (1 — B)Rw + BR:.
The EL approach for selection of the shrinkage factor 8 could possibly take the following form [4,1]:
Pa = argmin [LRV" (R(8)|X) — med [w(LRIM. )]},

where o(LR|M, T) is the true p.d.f. of LR'/"(Ry|X) and med [w(LR|M, T)] stands for the median value. In other words,
the shrinkage factor is chosen such that the resulting LR of R(B8g ) is comparable with that of Ry. It is well known
that regularization is particularly effective in low sample support and the EL principle was shown in [4,1] to provide a
quite efficient mechanism to tune the regularization parameters. Various uses of the EL approach are possible and their
effectiveness has been illustrated in different applications. For instance, it has been used successfully to detect severely
erroneous MUSIC-based DOA estimates in low signal to noise ratio and it provided a mechanism to rectify the set of these
estimates to meet the expected likelihood ratio values [3,5]. Accordingly, the EL approach was proven to be instrumental in
designing efficient adaptive detectors in low sample support [4].

In [1,8] we extended the EL approach to a class of complex elliptically contoured distributions (ECD) (namely the
EMSm (0, R, @) type of distributions, as referred to in this paper) and we provided regularization schemes for covariance
matrix estimation. Regularized covariance matrix estimation has been studied extensively in the literature, see e.g. [18,
12,19,20,27] for a few examples within the framework of elliptically contoured distributions. In the latter references, the
regularization parameters are selected with a view to minimize either the mean-square error or Stein loss. Our goal in
this paper is not to derive and compare new covariance estimation schemes, as in [1]. Rather we focus herein in deriving
invariance properties of the LR for other classes of complex elliptically contoured distributions, so as to extend the class of
distributions for which the EL approach of covariance matrix estimation is feasible. How the EL approach will be used in this
framework is beyond the scope of the present paper. The starting point of the present study is the following. While there
is a general agreement and usually no ambiguity for defining vector elliptically contoured distributions, when it comes to
extending ECD to matrix-variate, a certain number of options are possible [11]. Indeed, Fang and Zhang distinguish four
classes of matrix-variate ECD whose p.d.f. and stochastic representations are different. As we shall see shortly, considering
as in [1] the columns of X as independent and identically distributed (i.i.d.) elliptically distributed random vectors (r.v.)
results in X ~ &M38y.7(0, R, ¢) (obtained from a multivariate spherical distribution in the terminology of [11]). On the
other hand, the ECD considered, e.g., in [23,24] are obtained assuming that vec(X) e CY"*1 follows a vector ECD, which we
will denote as X ~ €V 48y 1(0, R, ¢).

In this paper we shall examine the p.d.f. of the likelihood ratio for two classes of complex ECD not covered in [1], namely
X ~ &88y1(0,R,¢)and X ~ €V (0, R, ¢). For the former, we will pay special attention to the matrix-variate Student
distribution. The latter category was considered in [23,24] where Richmond proved the quite remarkable result that Kelly’s
generalized likelihood ratio test (GLRT) for Gaussian distributed data [17] was also the GLRT for this class of ECD. A main
result of this paper includes stochastic representations of the likelihood ratio (and proof of invariance) in both the over-
sampled case (T > M) and the under-sampled scenario where the number of available samples in less than the size of the
observation space (T < M), in which case regularization is mandatory. Note that invariance properties of some likelihood
ratios for elliptically contoured distributions (mostly EVS) have been studied, e.g., in [16,15,10,7,6], but the likelihood ratios
are somewhat different from what we consider here and they serve different purposes.

2. A brief review of elliptically contoured distributions

In this section, we provide a brief summary of ECD with the only purpose of providing sufficient background for derivation
and analysis of the LR in the next sections. We refer the reader to [11,6] for details that are skipped here and for an exhaustive
analysis: our presentation here will follow the terminology of [11]. We also point to the recent paper [22] for an excellent
comprehensive overview and applications to array processing. A vector ¥ € CM is said to be spherically distributed if its
characteristic function 8{eiRe{‘H*}} = ¢(t"t): we will denote it as x ~ 8y (¢). Assuming that x has a density (which we
will do through this document) the latter only depends on x"x. A vector x € C¥ is said to follow an elliptically contoured
distribution if

g{eiRe{tH?‘}} _ 8{eiRe{th}}¢(tHRt)_ (2)
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