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a b s t r a c t

We address the problem of spherical deconvolution in a non-parametric statistical
framework, where both the signal and the operator kernel are subject to measurement
errors. After a preliminary treatment of the kernel, we apply a thresholding procedure to
the signal in a second generationwavelet basis. Under standard assumptions on the kernel,
we study theminimax performances of the resulting algorithm in terms ofLp losses (p ≥ 1)
on Besov spaces on the sphere. We hereby extend the application of second generation
spherical wavelets to the blind spherical deconvolution framework. It is important to stress
that the procedure is adaptive with regard to both the target function sparsity and the
kernel blurring effect. We end with the study of a concrete example, putting into evidence
the improvement of our procedure on the recent blockwise SVD algorithm of Delattre et al.
(2012).

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Statistical framework

Consider the following problem:we aimat recovering a signal f defined on the 2-dimensional sphere S2. f is not observed
directly, but through the action of a blurring processmodeled by a linear operatorK , and further contaminated by an additive
Gaussian white noise. This is resumed in the classic white noise model

Yε = Kf + εẆ (1.1)

where Ẇ is awhite noise onL2(S2) andK : L2(S2) → L2(S2) is ameasurable operator.We shall further restrict the shape of
K by assuming that it is a convolution operator onL2(S2), a classic framework [14,19,18] enjoying convenientmathematical
properties (see Section 1.2). Namely, we suppose that there exists h ∈ L2(SO(3)) such that

Kf (ω) =


SO(3)

f (g−1ω)h(g)dg (1.2)

where dg is the Haar measure on SO(3). So to speak, f is averaged on a neighborhood of ω and weighted according to
h(g) for each rotation g−1 applied to ω. Alternatively, in a density estimation framework, one observes a random n-sample
(θ1X1, . . . , θnXn) of Z = θX with density Kf , where θ is a random element in SO(3) (the group of rotations on R3) with
density h, and X has density f ∈ L2(S2). Formally we have ε ∼ n−1/2, and one can show that (1.2) holds as well [14].
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In practice, the blurring operator K is seldom directly observable and rather subject to measurement errors. For example K
can be unknown but approximated via preliminary inference, or it can be the result of an unknown perturbation applied to a
known operator. Following Efromovich and Koltchinskii [9] and Hoffmann and Reiß [15], wemodel the error in the operator
as an additive Gaussian operator white noise. The observed result is a noisy version Kδ , satisfying

Kδ = K + δḂ (1.3)

where Ḃ is a Gaussian operator white noise on L

L2(S2)


the set of linear endomorphisms of L2(S2), independent from Ẇ .

The meaning of models (1.1) and (1.3) is as follows: for u, v, w,∈ L2(S2), observable quantities take the forms

⟨Kf , u⟩ + εα(u), ⟨Kv,w⟩ + δβ(v,w)

where α(u) and β(v,w) are both Gaussian centered variables with respective variances ∥u∥2
2 and ∥v∥2

2∥w∥
2
2. Moreover, if

u′, v′, w′
∈ L2(S2) are other candidate functions, we have

E[α(u)α(u′)] = ⟨u, u′
⟩L2(S2)

E[β(v,w)β(v′, w′)] = ⟨v, v′
⟩L2(S2)⟨w,w

′
⟩L2(S2).

Many scientific fields call upon simple and efficient tools for the resolution of (1.1). Spherical deconvolution is for example
well illustrated by the study of ultra high energy cosmic rays (UHECR), which are high energy radiations hitting the earth
fromapparently randomdirections. They could originate from long-lived relic particles from the Big Bang. Alternatively, they
could be generated by the acceleration of standard particles, such as protons, in extremely violent astrophysical phenomena.
They could also originate from Active Galactic Nuclei (AGN), or from neutron stars surrounded by extremely high magnetic
fields. Discriminating among these different hypotheses involves the precise reconstruction of the probability density
generating their observations. One could ask for example whether the latter is uniformly distributed among the sphere,
or if it is constituted of superimposed localized spikes. In practice however, observations (X1, . . . , Xn) of such radiations
are often subject to various physical perturbations. We model these by a random rotation θ, which is to say we actually
observe (θ1X1, . . . θnXn), n realizations of the random variable Z = θX . The difficulty of the problem is characterized by the
spreading of h, the density of θ , around the neutral element of SO(3): the less localized, the more difficult the estimation of
f . Moreover, the law of θ is not known in general, even if some assumptions can restrict its shape. In this case, preliminary
inference is necessary, and leads to an estimator Kδ of K according to (1.3).

Case of a known operator

We shall consider here the case where δ = 0, and expose the path which finally led to the introduction and use of
needlets. Spherical harmonics constitute themost natural set of functions to expand f ∈ L2(S2). Their frequency localization
furthermore makes them ideally suited to spherical deconvolution, as they realize a blockwise SVD of K (as shown in
Proposition 1.1), a propertywhich guarantees the stability of its inversion. It prompted Healy et al. [14] to solve the spherical
deconvolution problem with their use, hereby reaching optimal L2 rates of convergence on Sobolev spaces (Kim and Koo
[19]). Unfortunately their performances can prove quite poor when the loss is measured by other Lp norms, 1 ≤ p ≤ ∞,
since they lack localization in the spatial domain (see [13]). The recent development of spherical wavelets [27,22] reversed
this compromise, the latter beingwell localized in the spatial domain but very poorly in the frequential one. Thismakes them
useful when a direct estimation of f is involved (see for example Freeden et al. [10] or Freeden et al. [11] for applications to
geophysics and atmospheric sciences), but irrelevant in the setting of spherical deconvolution. The solution to this problem
was finally brought by Narcowich et al. [24], who introduced a new set of functions, called needlets, which preserve the
frequential localization of spherical harmonics and remedy their lack of spatial localization. Thereby, needlets inherit the
stability of spherical harmonics in spherical deconvolution. They were subsequently exploited by Kerkyacharian et al. [18],
who designed a procedure involving needlets attaining near-minimax rates of convergence for Lp losses (1 ≤ p ≤ ∞)
on Besov spaces (which definition is given in Section 2.3). Needlets also found various applications in the case of a direct
estimation of f , whether in astrophysics [21,13] or brain shape modeling [28].

Case of an unknown operator and Galerkin projection

The main methods in the context of blind deconvolution involve SVD and Galerkin schemes (see [3,4,15] for example).
Galerkin projections were for example successfully applied to blind deconvolution on Hilbert spaces [9] or on Besov spaces
on [0, 1]d [15,4]. They are based upon a discretization of (1.1) and (1.3) through the choice of appropriate test functions.
Suppose we want to recover a function f from the observation of g = Kf . Let (Vn)n≥0 and (Wn)n≥0 be two increasing
sequences of finite n-dimensional subspaces in L2(S2), which admit the respective orthogonal bases ϕ = (ϕk)k≤n and
ψ = (ψk)k≤n. The Galerkin approximation fG ∈ Vn of f is the solution of the equation

⟨KfG, v⟩ = ⟨g, v⟩, ∀v ∈ Wn. (1.4)

This equation actually amounts to solving a finite dimensional linear system. Indeed, for γ ∈ Vn, note γ n the vector whose
components are (⟨γ , ϕk⟩)k≤n and K n the matrix with entries (⟨Kϕk, ψk⟩)k,k′≤n. Then fG ∈ Vn and we have

gn
= K nf nG .



Download English Version:

https://daneshyari.com/en/article/1145706

Download Persian Version:

https://daneshyari.com/article/1145706

Daneshyari.com

https://daneshyari.com/en/article/1145706
https://daneshyari.com/article/1145706
https://daneshyari.com

