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a b s t r a c t

In a generalized linear model, the mean of the response variable is a possibly non-linear
function of a linear combination of explanatory variables. When the nonlinear function is
unknown and is estimated nonparametrically from the data, these models are known as
single index models. Using the relation of generalized linear models with the exponential
family model, this paper shows how to use a modified version of the empirical cumulant
generating function to estimate the linear function of the explanatory variables with
no need of smoothing techniques. The resulting estimator is consistent and normally
distributed. Extensive simulations, partially reported here, show that the method works in
practice. The method can also be seen as complementary to existing fully nonparametric
methods. In fact, it can provide an initial value that can be used to fine tune a nonparametric
estimator of the link function in the first step of the estimation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Generalized linearmodels [24] allow the expectation of the response Y given the explanatory variables X to be nonlinear,
through what is called the link function, e.g. E [Y |X] = G


X ′β


, for some univariate function G, whose inverse is called link

function, i.e. X ′β = G−1 (E [Y |X]), as it links a linear function of the predictors to the conditional expectation. In some
situations, it is not obvious what G should be. If G is not specified it can then be estimated from the data. Then, one calls this
semiparametric model the single index model.

The generalized linear model makes direct reference to the exponential family model and the exponential dispersion
family model [17,18]. On the other hand, the single index model makes reference to neither the specific functional form of
G nor to the distribution of the errors, hence it is more general.

The literature on estimation of single index models abound. One approach is the average derivatives method, where one
exploits the fact that

dE [Y |X = x] /dx = dG

x′β

/dx ∝ β,

and the prime ′ stands for transposition. This requires a high dimensional kernel smoother and consequently is subject to
the so called curse of dimensionality ([26,13], see [16], for an improved method and references therein). Another approach
is to estimate G nonparametrically based on some initial estimate of β and then estimate β using the estimator for G, cycling
through the procedure until convergence (e.g. [12,15,29,4,6], and references therein). One of such nonparametric models
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is the Estimating Function Method (EFM) approach of Cui et al. [4]. This method achieves the same if not smaller variance
than the estimator in [2]. For the EFM and other approaches, the first guess of β can be crucial for convergence to a global
maximum. The problem is made even harder by the fact that the initial amount of smoothing used to estimate G strongly
depends on the starting value of β . This initial problem could be avoided if one had a reasonably good estimate of the
index parameter that does not require previous estimation of G based on some fully nonparametric approach. Recently, Fan
et al. [6] have considered estimation of the quantile regression for the single index model in the presence of large number
of regressors via penalization, essentially incorporating variable selection into the kernel smoothing estimation.

The goal of this paper is to impose the semiparametric restriction that the density of Y conditional on X belongs to
the exponential dispersion family model with canonical link, and use this to estimate β . The estimation takes advantage
of the fact that – under the aforementioned restrictions – the only infinite dimensional parameter is related to the
conditional cumulant generating function of the response variables. Direct estimation of this would require nonparametric
methods. However, this paper shows that it is possible to find a particular relation between the conditional mean and the
unconditional expectation of some known function of the data. To the author knowledge this relation is new. Estimating
unconditional expectations of known functions does not require any smoothing. Hence, in this context, the estimation of β
can be turned into a nonlinear least square problem and estimated byGeneralizedMethod ofMoments (GMM). The resulting
estimator is shown to be normally distributed. The method is applicable to continuous and binary dependent variables.

The next section presents the relation between the conditional mean and variance of the response and the unconditional
expectation of some function of the data. This relation is the motivation for the estimator. Having defined the estimator,
the asymptotic properties are derived under regularity conditions. Section 3 contains a discussion of the results and the
conditions. The proofs are deferred to Section 4.

2. Statement of the problem

For some λ > 0, let Pλ be a probability measure with cumulant generating function λψ (t) = ln


eytdPλ (y)

supposed

to be finite for t ∈ T and T is some set containing the origin (called the effective domain of ψ , e.g. [18]). Then,

dPλ (y|η)
dPλ (y)

= exp {λ (ηy − ψ (η))} (1)

is a density in the exponential dispersion family with respect to (w.r.t.) the dominating measure Pλ. The family is very large
as it is essentially defined through any probabilitymeasure Pλ having a finitemoment generating function around the origin.
Hence, the parameter space can be restricted to be the set of values η ∈ R and λ > 0 for whichψ (η) is finite, and λψ (•) is
the cumulant generating function of some Pλ. Throughout it is assumed thatλ and η are inside the parameter space, assumed
to be nonempty, so that λψ (t) is always finite.

Here, interest is restricted to the canonical parameter η := x′β , for some explanatory variable x ∈ X ⊆ RK and a
conformable vector β . This shall be a maintained condition throughout the paper. In its full generality, the exponential
dispersion model assumes the canonical parameter to be a possibly nonlinear function of x′β . As discussed in [25,24], for
η = x′β , (1) is a subset of the generalized linearmodel such that, given a sample {Yi, Xi : i = 1, 2, . . . , n}, a sufficient statistic
for β is given by

n
i=1 XiYi. Here, interest is restricted to this case only, where however λ (>0) is unrestricted. The effective

domain of ψ implicitly define restrictions on x and β via η.

Example 1. Considerψ (η) = η2/2 and set λ = σ−2 for some σ 2
∈ (0,∞), so that the exponential dispersion model is the

linear Gaussian model

exp


1
σ 2


yx′β −


x′β
2

2


Pλ (y)

where Pλ (y) =
1

√

2πσ 2 exp

−

y2

2σ 2


. Then, {η ∈ R : ψ (η) < ∞} = R so that the only restriction on x and β is that x′β ∈ R.

In the above example, the parameters are essentially unrestricted. This is often not the case.

Example 2. Let ψ (η) = − ln (−η) and λ > 0 so that the exponential dispersion model is the gamma model

exp

λ

yx′b + ln


−x′b


Pλ (y)

where Pλ (y) = exp {(λ− 1) ln (λy)+ ln λ− ln0 (λ)}, and 0 (λ) is the gamma function. Hence, the model is defined for
η < 0 only in order to make sure that ψ (η) < ∞. In this case, it is convenient to reparametrize in terms of b̃ = −b so that
η < 0 is for example satisfied restricting x and b̃ to have only positive entries.

Another implication is that the restriction on η does restrict the distribution of the regressors when they are stochastic,
or their range of values when deterministic. In the Gaussian example, X can take values in RK , but its distribution needs to
be tight to avoid infinities.
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