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a b s t r a c t

Linear mixed models (LMMs) are widely used for regression analysis of data that are
assumed to be clustered or correlated. Assessing model fit is important for valid inference
but to date no confirmatory tests are available to assess the adequacy of the fixed effects
part of LMMs against general alternatives. We therefore propose a class of goodness-
of-fit tests for the mean structure of LMMs. Our test statistic is a quadratic form of the
difference between observed values and the values expected under the estimated model
in cells defined by a partition of the covariate space. We show that this test statistic has an
asymptotic chi-squared distribution when model parameters are estimated by maximum
likelihood or by least squares and method of moments, and study its power under local
alternatives both analytically and in simulations. Data on repeated measurements of
thyroglobulin from individuals exposed to the accident at the Chernobyl power plant in
1986 are used to illustrate the proposed test.

Published by Elsevier Inc.

1. Introduction

The linear mixed model (LMM) [15] extends the linear model by including random effects in addition to the usual
fixed effects in the linear predictors. By incorporating random effects LMMs can accommodate clustered or correlated data.
Developments in model fitting algorithms and their implementations in statistical packages (e.g. lme in R; PROC Mixed in
SAS 9.2; SAS Institute, Cary, NC) have greatly facilitated the applications of LMMs.

Two important steps in modeling are selecting a model and checking its fit. Often model selection is done by comparing
nested models, via likelihood ratio or score tests, as part of model building, and approaches are also available for comparing
non-nested models [3,5]. Variables are often selected for inclusion into a model if their p-value obtained from a Wald test
meets some significance criterion. AIC, BIC and other model selection principles [20,26] also focus on selection of covariates.
Once a model is selected, its fit should be assessed. For fixed effects models this is done by checking residuals and formal
goodness of fit tests, such as score or Wald tests or likelihood ratio tests based on nested models. Khuri, Mathew and Sinha
[10] discussed likelihood ratio testing for fixed effects within LMMs. The literature for assessing the fit of LMMs against
general alternatives is limited, and is mostly concerned with specification of the random effect distributions. Likelihood
ratio testing for the presence of random effects in LMMs has been discussed by Self and Liang [25] and Crainiceanu and
Ruppert [4]. Jiang [8] and Ritz [22] assessed the distributional assumptions for the random effects in LMMs. Claeskens and
Hart [2] proposed tests for normality of the random effects and/or error terms. Lombardía and Sperlich [11] introduced a test
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for the hypothesis of a linear fixed effect part in a generalized linearmixedmodel against the alternative of a semiparametric
fixed effect part. Pan and Lin [17] proposed checking the adequacy of 2-level generalized linear mixed models based on
the maximum absolute partial sums of residuals over a scalar projection of covariates. Their approach allows for assessing
overall model fit as well as the functional form of individual components of the fixed effects part. However, to date there
is no general easily computable test for checking the fit of the fixed-effect part of a model against unspecified alternatives,
including omitted covariates or interaction terms or misspecifications of the functional form of covariates. Such a test is
needed as a model-building tool.

Examination of the residuals of a model is a standard way to judge the quality of model fit. This can be done in many
different ways. One useful way is to classify the response into mutually exclusive events defined in terms of the covariates
and then assess for each category the deviation of the observed values and the expected values under themodel. For survival
data, Schoenfeld [24] presented a class of omnibus chi-squared goodness of fit tests for the proportional hazards regression
model, based on the observed minus the expected values of the covariates at each failure time. In this article, we adopt the
idea of Schoenfeld [24] and develop a goodness of fit test for the mean structure of LMMs by comparing the observed and
expected values computed from the model within cells of a partition of the covariate space.

The rest of the paper is organized as follows. In Section 2 we present the linear mixed model, introduce the goodness
of fit test statistic, and derive its asymptotic properties, including its theoretical power under local alternatives. We first
assume that the random effects components and the error term are normally distributed and parameters are estimated by
maximum likelihood (Section 2.2).We then relax the assumption of normality and only require finite higher ordermoments
for the random effect and the error term and estimate parameters using least squares andmethod of moments (Section 2.3).
We study the power of the test in simulations in Section 3, present a data example in Section 4 and close with a discussion
in Section 5.

2. Goodness of fit test statistic for linear mixed models

2.1. The linear mixed model

We consider the linear mixed model (LMM) with additive random effects,

Y = Xβ +

R
r=1

Zrαr + ε, (1)

where YN×1 is the vector of observations; XN×p = (x1, . . . , xN)T is the design matrix for the fixed effects part of the model,
where xi denotes the p × 1 covariate vector for individual i; β is a p × 1 vector of unknown fixed effects parameters; Zr is
the known N × mr design matrix for the random effect αr , an mr × 1 random vector, for r = 1, . . . , R. The random effects
α1, . . . ,αR are i.i.d. and independent of the error term ε. In the next section we assume that the components αkr of αr and
ε are normally distributed. Within the LMMwith a single random effect, we later require no distributional assumptions on
the random effect and the error terms, but only the finiteness of their 4+ δ moments for some δ > 0. We let θ = (β,ψ) be
the parameters of model (1), where ψ = (σ 2

ϵ , σ 2
1 , . . . , σ 2

R ) is the vector of all variance components.
An important special case of model (1) is the 2-level LMM, that includes only a single random effect,

yij = xTijβ + αi + ϵij, i = 1, . . . ,m, j = 1, . . . , ni, (2)

where, using a slightly different notation, the 1 × p vector xTij = (1, xij1, . . . , xij(p−1)) denotes covariates for the jth
observation within the ith cluster. The first entry in xij is set to be 1 to accommodate an intercept term in the model. We let
yi = (yi1, . . . , yini) denote the vector of observations for the ith cluster. The normally distributed cluster specific random
effects αi ∼ N(0, σ 2

α ) are assumed to be independent of the error terms ϵij ∼ N(0, σ 2
ϵ ). Then under model (2), Y is also

normal, Y ∼ N(Xβ,V) with a block diagonal covariance matrix V, where each of the m ni × ni blocks Vi, i = 1, . . . ,m, has
entries σ 2

α +σ 2
ϵ on the diagonal and entries σ 2

α elsewhere. Throughout this paper, we regardmodels (1) and (2) as conditional
specifications of the distribution of Y given X.

2.2. Test statistic and its asymptotic behavior when parameters are estimated by maximum likelihood

2.2.1. LMM with a single random effect
We first discuss the 2-level LMM in (2) when both the random effect and the error term are normally distributed and

derive our test statistic for the setting where the model parameters θ = (β,ψ) = (β, σ 2
α , σ 2

ϵ ) are estimated by maximum
likelihood (MLE). Here X is considered to be fixed.

Under Assumptions1.1–1.6 stated in Theorem 1, consistency and asymptotic normality of the MLE θ̂ = (β̂, ψ̂) follow

from [16], i.e.
√
N(θ̂ − θ)

D
→N(0, J−1), where J denotes the limiting Fisher information matrix. Wand [30] showed that

under model (2), β̂ and ψ̂ are asymptotically uncorrelated and thus

J =


Jββ 0
0 M


, (3)
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