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a b s t r a c t

The article proposes new tests for the number of real and complex unit roots in vector au-
toregressive models. The tests are based on the eigenvalues of the sample companion ma-
trix. The limiting distributions of the eigenvalues converging to the unit eigenvalues turn
out to be of a non-standard form and expressible in terms of Brownian motions. The tests
are defined such that the null distributions related to eigenvalues ±1 are the same. The
tests for the unit eigenvalues with nonzero imaginary part are defined independently of
the angular frequency. When the tests are adjusted for deterministic terms, the null distri-
butions usually change. Critical values are tabulated via simulations. Also some simulation
based finite sample properties are presented together with comparisons with correspond-
ing likelihood ratio tests. The relation of the unit roots to cointegration is discussed. An
empirical example is provided to show how to use the test with real data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The vector autoregressive model has been widely used especially in econometrics. Special interest is devoted to separat-
ing out common trends and stationary components. There is a large literature on these issues under the title of cointegration
analysis. The authoritative monograph is [10]. Hylleberg, Engle, Granger, and Yoo [9] introduced the concept of cointegra-
tion to seasonal models. Further analysis is developed by Ahn and Reinsel [3], Johansen and Schaumburg [11], Cubadda [7]
and Ahn, Cho, and Seong [2] among others. These works are based on the Gaussian likelihood. Another approach is based on
the eigenvalues of the sample companion matrix estimated by least squares, see [1] and references therein. Here we extend
the eigenvalue approach to complex unit roots, the seasonal unit roots being the most important special cases. We derive
the asymptotic distributions of the sample eigenvalues of the companion matrix under the assumption that there are given
number of real and complex unit roots with the rest being less than one in absolute value.We also allow deterministic terms
such as constant level and different types of trends. It turns out that the distributions depend on the angular frequency θ
of the complex unit roots e±iθ as well as the type of deterministic terms present. The proposed test statistics, however, are
such that their limiting distributions reduce to two types: those associated with eigenvalues ±1 and those associated with
the complex conjugate pair. In the latter case limiting distributions are independent of the angular frequency. This fact is
useful because the test can be applied without knowing the exact value of the angular frequency.

The article is organized as follows. In Section 2 the limiting distributions are derived at different angular frequencies
with and without deterministic terms. Section 3 shows how the unit eigenvalues are related to cointegration. Section 4
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defines the proposed tests for the number of unit roots and tabulates necessary critical values. Simulation results on the
finite sample behavior of the tests are presented in Section 5. Tests are applied to income and consumption data fromWest
Germany in Section 6. Results are proved in Section 7. All numerical work is done within R environment [15].

2. Limiting distributions

Consider the p-variate vector autoregressive model of order d,VAR(d),

yt = 51 yt−1 + · · · + 5d yt−d + ϵt , t = 1, . . . , T , (2.1)

where the errors ϵt are independent with E(ϵt) = 0, and with cov (ϵt) = � assumed positive definite (p.d.). Let us assume
that the initial values y0, . . . , y−d+1 are fixed. Write the VAR(d) model (2.1) in companion form

Yt = 9Yt−1 + ηt , (2.2)

where

Yt =

 yt
...

yt−d+1

 , 9 =


51 52 · · · 5d−1 5d
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 . . . I 0

 , ηt =


ϵt
0
...
0

 . (2.3)

In this article we derive statistical tests concerning unit eigenvalues, real and complex, of 9. The eigenvalues are the
roots of the determinant equation |9 − λI | = 0. All unit roots can be written in the form eiθ . We assume that there are q0
roots equal to ei0 = 1, qj pairs of roots equal to e±iθj , 0 < θj < π, j = 1, . . . , n, and qn+1 roots equal to eiπ = −1. Addi-
tionally there are s eigenvalues inside the unit disc. Finally, we assume that there are no eigenvalues outside the unit disc.
Then q0 + 2(q1 + · · · + qn) + qn+1 + s = pd. The numbers qj, are called algebraic multiplicities, but we also assume that
there are qj linearly independent eigenvectors corresponding to each unit eigenvalue, i.e. geometric multiplicity equals to
the algebraic multiplicity for the unit roots.

The matrix 9 is estimated by the least squares (LS)

9 =


T

t=1

YtY ′

t−1


T

t=1

Yt−1Y ′

t−1

−1

, (2.4)

where the prime refers to transpose. Note that 9 has the same structure as 9 in (2.3). The eigenvalues of the estimate 9
are exploited in our tests determining the number of unit roots corresponding to each frequency θj, j = 0, 1, . . . , n + 1.
The limiting distributions of the eigenvalues of9 corresponding to the unit eigenvalues of 9 are given in the next theorem
which is proved in Section 7.

In the followingwe need complexmatrices and vectors. IfA is complex, then its complex conjugate is Ā and the transpose
of the complex conjugate is A∗

= Ā′.

Theorem 1. Let 9 be the least squares estimate of 9 in model (2.2). Assume that 9 has q0 eigenvalues equal to 1, qj pairs eigen-
values equal to e±iθj , 0 < θj < π, j = 1, . . . , n, qn+1 eigenvalues equal to −1. Further we assume that the multiplicities q0, . . . ,
qn+1 are equal to geometric multiplicities. All other eigenvalues are assumed to lie inside the unit disc on the complex plane. All
limits are taken as T → ∞.
(1) If q0 > 0, let λ̂01, . . . , λ̂0q0 be the q0 eigenvalues of 9 which are closest to 1. Then T (λ̂01 − 1, . . . , λ̂0q0 − 1)′ converges in

distribution to the eigenvalues of the random matrix 1

0
dZ(s) Z(s)′

 1

0
Z(s)Z(s)′ ds

−1

, (2.5)

where Z is a q0-dimensional standard Brownian motion.
(2) If qn+1 > 0, let λ̂π1, . . . , λ̂πqn+1 be the qn+1 eigenvalues of 9 closest to−1. Then−T (λ̂π1+1, . . . , λ̂πqn+1 +1)′ converges in

distribution to the eigenvalues of the random matrix (2.5) with Z being now a qn+1-dimensional standard Brownian motion.
(3) If qj > 0, let λ̂θj1, . . . , λ̂θjqj be the qj eigenvalues of 9 which are closest to eiθj . Then T (λ̂θj1 − eiθj , . . . , λ̂θjqj − eiθj)′ converges

in distribution to the eigenvalues of the random matrix

eiθj
 1

0
d3j(s) 3j(s)∗

 1

0
3j(s)3j(s)∗ ds

−1

, (2.6)

and T (
¯̂
λθj1 − e−iθj , . . . ,

¯̂
λθjqj − e−iθj)′ converges in distribution to the eigenvalues of the complex conjugate of (2.6). Here

3j = 31j + i32j with 31j and 32j being independent qj-dimensional Brownian motions such that 3j is the standard complex
valued Brownian motion with E[3j(s)3j(u)∗] = min(s, u)I .
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