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a b s t r a c t

In this paper, we consider the application of the empirical likelihood method to a partly
linear model with measurement errors in possibly all the variables. It is shown that
the empirical log-likelihood ratio at the true parameters converges to the standard chi-
square distribution. Also, a class of estimators for the parameter are constructed, and the
asymptotic distributions of the proposed estimators are obtained. Some simulations and
an application are conducted to illustrate the proposed method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let (X, T , Y ) denote a triple of random variables (or vectors). Consider the following partly linear model

Y = XTβ + g(T ) + ε (1)

where X is a p-dimensional random vector, T is a random variable defined on [0, 1], β is an unknown p-dimensional
parameter vector. The function g(·) is an unknown smoothing function defined in [0, 1], and ε is the random error with
E(ε|X, T ) = 0.

However, because of the measuring mechanism or the nature of environment, the covariates are not always observable
without error. Generally, for model (1), the following three cases are considered. Case one with measurement errors in the
parametric part, Cui and Li [3], Liang et al. [10], He and Liang [6] studied the asymptotic normality of the estimators of the
parameter and the convergence rate of the estimate of the nonparametric function in model (1). The empirical likelihood
inference for parameter β in the semi-linear model can be found in Cui and Kong [2]. Case two with measurement errors
in the nonparametric part, Fan and Truong [5] discussed the regression function estimate in the nonparametric regression
model. Liang [9] studied the generalized least-squares estimator of the parameter β and obtained the asymptotic normality
of the estimator. Chen and Cui [1] applied the empirical likelihood method to the partly linear model in this case. Case
three with measurement errors in both the parametric part and the nonparametric part, Zhu and Cui [18] treated the strong
convergence, optimal rate of weak convergence and the asymptotic normality of the estimators of the parameters.

In this paper, we discuss the empirical likelihood inference for partly linear models with measurement errors in both
the parametric and the non-parametric part, simultaneously. The empirical likelihood as an alternative to the bootstrap for
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constructing confidence regions was introduced by Owen [11,12]. Themethod defines an empirical likelihood ratio function
to construct confidence regions. Important features of the empirical likelihoodmethod are its automatic determination of the
shape and orientation of the confidence region by the data. Qin and Lawless [14], Qin [13], and Shi and Lau [15] introduced
this method into semi-parametric models and obtained the asymptotic efficiency of the maximum empirical likelihood
estimate. More references can be found from Xue and Zhu’s book [17] and references therein.

As noted earlier, the variables X and T are measured with error. That is, X and T are observed through
Z = X + u,
W = T + v,

where u and v are random errors. Therefore, a partly linear models with errors in all possible variables is defined as follows:Y = XTβ + g(T ) + e,
Z = X + u,
W = T + v,

(2)

where u, v and (XT, T , e)T are mutually independent, T has an unknown density f (t).
For model identification with errors in nonparametric part, generally assume that v has a known distribution with

characteristic function φv(t) (see Fan and Truong [5]). Further we assume that
E(u) = E(v) = 0, Cov(u) = Σu,

E(e|X, T ) = 0, Var(e|X, T ) = σ 2
e ,

where σ 2
e is unknown, Σu > 0 is assumed known (for model identification with errors in parametric part, see Zhu and

Cui [18]).
In the present paper, for measurement error in nonparametric part T , we use the deconvolution method to estimate the

function g(·); for measurement error in parametric part X , apply the parametric correction for attenuation. Based on the
deconvolution estimate of g(·), for parameter β , we propose a empirical log-likelihood ratio function with correction for
attenuation. It is shown that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square
distribution. The construction procedure and main results are described in Section 2. Simulation studies and a real data
analysis are presented in Section 3. A concluding remark is presented in Section 4. Proofs are delegated to an Appendix.

2. Methodology and main results

We have a sample (Xi,Wi, Yi), i = 1, . . . , n of model (2). Let g1(t) = E(X |T = t) and g2(t) = E(Y |T = t). If covariates
X and T are observable, in order to construct empirical likelihood ratio function, we introduce an auxiliary random vector

ηi(β) = X̆i{Y̆i − X̆i
T
β},

where X̆i = Xi − g1(Ti), Y̆i = Yi − g2(Ti). Note that E(ηi(β)) = 0 if β is the true value of the parameter. Using this, an
empirical log-likelihood ratio function evaluated at β is defined as

l(β) = −2max
 n

i=1

log(npi) : pi ≥ 0,
n

i=1

pi = 1,
n

i=1

piηi(β) = 0

.

However, the covariates X and T are measured with errors, the above empirical likelihood ratio function cannot directly
used. First, we need to dealwith the two unknown functions g1(·) and g2(·) in l(β), a natural way is to replace them in l(β) by
two estimators. In the following,wewill use the deconvolutionmethod to estimate them. Next, because of themeasurement
error in covariate X , in order to avoid the underestimate for parameter, we shall add the correction for attenuation in the
construction of auxiliary random vector.

For non-parametric models with measurement errors, Stefanski and Carroll [16], Fan [4], Fan and Truong [5] used a
deconvolution method to study the estimation of non-parametric regression function. Let f (t) be the density of T . The
deconvolution kernel estimator of the density f (t) is defined as (see Fan and Truong [5], or Stefanski and Carroll [16])

f̂n(t) =
1
nh

n
j=1

Kn


t − Wj

h


,

where h = hn is the bandwidth, and Kn(z) is a deconvolution kernel function defined by

Kn(z) =
1
2π


R1

exp(−itz)
φK (t)

φv(t/h)
dt,

φK (·) is the Fourier transform of ordinary kernel function K(·) (see condition (C5)) and φv(·) is the characteristic function
of the error variable v. Denote

ωni(·) = Kn


· − Wi

h


j

Kn


· − Wj

h


=

1
nh

Kn


· − Wi

h


f̂n(·).
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