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1. Introduction

Researchers in multiple fields face a growing need to understand the tails of probability distributions, and extreme value
theory presents tools which, under certain regularity assumptions, let us build simple yet powerful models for these tails.
In the case of heavy tailed distributions, the setting of extreme value theory is as follows: suppose our data is drawn from a
distribution F, and assume that there is a constant y > 0 and some slowly varying function L such that

_1 . . L(ax)
1—FXx) =Lkx)-x v, with lim ——= = 1foralla > 0. (1)
x—=00 L(X)
Then, F is in what is called the Fréchet domain of attraction. If F satisfies this property (which most commonly used heavy-
tailed distributions do), extreme value theory provides an elegant and concise description of the asymptotic properties of
sample maxima of F. A major challenge is that this description relies on knowledge of the parameter y, called the tail index
of the distribution F. And, unfortunately, estimating y from data is not always straightforward.

The literature on tail index estimation is quite extensive. One of the most widely used estimators is due to Hill [28], who

suggests estimating y with a simple functional of the top k + 1 order statistics of the empirical distribution:

1 k=t X
A~ n—j,n
Py = — E log [7] . (2)
H k =0 Xn—k,n

Here, X1, < --- < X, denote the order statistics of X, and k must be selected such that X;_; , > 0. Hill showed that y4
converges in probability to y > 0, provided the threshold sequence k = k(n) is an intermediate sequence that grows to
infinity slower than the sample size n. Hill’s idea of using a functional of extreme and intermediate order statistics to estimate
y has received considerable attention. Csérg6 et al. [8] suggest ways to adaptively weight the order statistics, while Dekkers
et al. [11] modify Hill’s estimator so that it is also consistent for a generalization of (1) that includes negative y. There have
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been proposals to eliminate the asymptotic bias of the Hill estimator [2,19,22,32]; recent proposals [6,21,23] show how to
do so without increasing asymptotic variance.

Nonetheless, tail index estimation remains quite challenging, especially for smaller samples on the order of a few hundred
to a thousand points. Of course, many difficulties are inherent to the subject matter: only a small fraction of any sample will
be inside the tail of the underlying distribution, and so even large samples may contain very little information relevant to
inference about this tail.

Other challenges, however, seem to arise from specifics of popular estimators. All estimators for y require choosing
a threshold at which the tail area of the distribution begins. Ideally, specifying a good threshold should be easy, and the
estimate 7 should not be sensitive to small changes in the threshold. Unfortunately, most commonly used estimators for y
do not reach this ideal. In the case of the Hill estimator - where the parameter k from (2) stands in for the threshold - the
choice is far from innocuous:

e Inadequate choice of k can lead to large expected error. Small values of k lead to high variance, while large values of k
usually lead to high bias. There is often an intermediate region for k where the estimator has fairly small expected error,
but it is not always easy to find this region.

e The Hill estimator is extremely sensitive to small changes in k, even asymptotically: Mason and Turova [31] show that
the Hill estimator process converges in law to a modified Brownian motion. Thus, even within the ‘good’ region with low
expected error, a minute change in k can impact the conclusions to be drawn from the model.

The problem of choosing the threshold k has been discussed, among others, by Beirlant et al. [3], Danielsson et al. [9],
Drees and Kaufmann [16], and Guillou and Hall [24]. Most existing methods rely on fairly complicated auxiliary models:
all but the last of the cited ones require either implicitly or explicitly fitting a difficult-to-fit second-order convergence
parameter. As the method due to Guillou and Hall does not require fitting secondary parameters, we use it as our main
benchmark in simulation studies. The problem of excessive oscillation of the Hill estimator has been discussed by Resnick
and Stdrica [36], who recommend smoothing the Hill estimator by integrating it over a moving window. We are not aware
of any guidance on how to automatically select k for this smoothed Hill estimator.

In this paper, we study a new estimator for y that arises from a simple subsampling idea. It is well known that sample

maxima from a distribution F satisfying (1) have the following property: if X, . . ., X, are drawn independently from F, then
max{Xy, ..., X
lim p| XXXk G, (%),
n—00 £(n) - nv

where G, is a limiting cumulative distribution function that only depends on y and £(n) is an appropriately chosen slowly
varying function. Noting this, we may suspect that when F has positive support,

lim s - (E[log max{Xy, ..., Xs}] — E[logmax{Xy, ..., Xs_1}]) = y. (3)
5§—>00

In Theorem 3.3, we show that this relation in fact holds under very mild conditions on F near 0. Our estimator follows directly
from this formula. Given a subsample size 1 < s < n, we first estimate the quantities

E[log max{Xy, ..., Xs}] and E[logmax{Xy,...,X;_1}]

by subsampling our data without replacement, and then use (3) to obtain an estimate for . Since this estimator operates by
computing the average log maxima of randomly subsampled blocks, we call it the Random Block Maxima (RBM) estimator.
Our idea is related to proposals for tail index estimation that study weighted sums of log-ratios of order statistics by, e.g.,
Drees [14] and Gardes and Girard [20].

The RBM estimator can be understood as belonging to two different frameworks of tail index estimation. The block
maxima approach, which was often used in the early days of extreme value theory, aims to directly fit the distribution
of the maxima of fixed (e.g., yearly) blocks of data. See Gumbel [25] for a review; Dombry [13] and Ferreira and de Haan [18]
provide a modern analysis. In this light, the RBM estimator can be seen as a randomized method of moments estimator in
the block maxima framework. Our estimator, however, can also be seen as an outgrowth of the more modern tail estimation
paradigm started by the Hill estimator: as we will show, the RBM estimator can be constructed by taking a U-statistic over
a Hill estimator with two order statistics. In other words, once we start subsampling the data, the block maxima and Hill
estimation frameworks merge and lead to the RBM estimator.

Our estimator behaves much like the Hill estimator; however, it addresses threshold selection much more naturally than
the latter:

e The RBM estimator has asymptotically smooth sample paths as a function of its threshold parameter k as defined in (7),
and, even in modestly sized samples, does not suffer from small-scale instability in k.

e Thanks to its smoothness properties, the RBM estimator admits a simple and intuitive threshold selection rule that does
not require fitting a second-order model.

Fig. 1 shows estimates produced by both the Hill and RBM estimators for the tail index y of gross proceeds from venture
capital backed IPOs in the United States between 1995 and 2011. Both estimates depend on a threshold parameter k. As
expected, the RBM sample path is much smoother than the Hill sample path. This makes it easier to select k with the RBM
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