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a b s t r a c t

We calculate semiparametric efficiency bounds for a partially linear single-index model
using a simplemethod developed by Severini and Tripathi (2001).We show that thismodel
can be used to evaluate the efficiency of several existing estimators.
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1. Introduction

A straightforward and convenient method for the calculation of semiparametric efficiency bounds was proposed in [22]
and illustrated using several examplemodels. In this paper,we extend theirmethod to investigate semiparametric efficiency
for the finite-dimensional parameters of the model

y = g0(X ′θ0)+ Z ′β0 + ε, (1.1)

where θ0 and β0 are unknown, g0(·) is an unknown function and ε has a distribution conditional on covariates X and Z .
This model encompasses several interesting special cases — the linear-, partially linear-, single-index- and partially linear
single-index models — and the method used here makes it simple to account for various identification conditions. Our
method is that illustrated by [22] (explained in greater detail in the recent survey [23]), and we extend their results to
semiparametric models of conditional quantiles, which were not considered by those authors.

A number of estimators of model (1.1) and related models have been proposed. Semiparametric efficient locally-linear
quasi-likelihood estimation of this model was proposed in [2]; they also showed that their estimator reached the bound
(and also verified that the estimator in [10] attained this bound). Sieve estimators of θ0 in the single-index model
have been proposed by [4,5]. Computationally attractive estimators were proposed in [27,12] for the single-index model
under conditional quantile identification conditions. [28,26] proposed estimators of model (1.1) for a conditional mean
identification condition. In addition, [9] have proposed an estimator for a closely-related group of models of conditional
quantiles. It is of interest to know whether these estimators attain the relevant efficiency bounds.
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In this article we use a method due to [22] to derive the semiparametric efficiency bound for this model in a straight-
forward manner, independent of assumptions regarding identification or type of estimator. Model (1.1) is not addressed
in [22], and we extend their method to this model without making any more restrictions on the conditional distribution of
ε given covariates. We then use our bound to compare to results for conditional mean- and quantile location identification
conditions. This method makes it easy to derive the general bound (i.e., for the ‘‘least-favorable parametric submodel’’) in
a clear manner without going through the usual two-step style calculation, as represented for example by [20,7], and we
view it as a complement to that model, which appears to bemorewell-suited to calculations for special cases (like efficiency
bounds for the class ofM-estimators, for example).

2. General assumptions

We assume the random variables y ∈ R,W = [X ′ Z ′
]
′
∈ Rp, and ε ∈ R have densities q20(y|W ), b

2
0(W ) and γ

2
0 (ε|W )

respectively. The likelihood associated with an observation (y,W ) is

L (θ; y,W ) = q20(y|W )b
2
0(W )

which could alternatively be expressed using the conditional density of the additive error term ε, because the model (1.1)
implies q0 and γ0 satisfy the equation q0(y|W ) = γ0(y − g0(X ′θ0) + Z ′β0|W ). Assume g0 ∈ L2(R, λ) and has a derivative
g ′

0 ∈ L2(R, λ), where the notation L2(A, µ)denotes the space of square-integrable functions on somedomainAwith respect
to somemeasureµ, andλ is Lebesguemeasure. Because g0 is unknown,wemake the definitionsX0 = X ′θ0 (whereX ′ denotes
‘‘X transpose’’ below) and W0 = [X0 Z ′

]
′
∈ Rp0 , and impose the ‘‘index restriction’’ q0(y|W ) = q0(y|W0) (equivalently,

γ0(ε|W ) = γ0(ε|W0)). This differs slightly from previous partial-index models in the literature (e.g., [20]) that assumed
the variance function was a fully nonparametric function of W . As is pointed out by [25], when considering estimation,
such models may suffer from the curse of dimensionality. Our results are relevant for models with variance functions that
generally depend only onW0. This restriction has some precedence in the literature; for example, [10] restrict their attention
to similar cases. Finally, we note that we implicitly assume themodel is identified. In practice, this wouldmean for example,
assuming the first element of θ0 is normalized to 1 and the first element of X is continuously distributed, as well as using
trimming in an estimator to ensure the positivity of the density of X ′θ0; however, we abstract away from these details to
focus on the technique used to derive the efficiency bound.

Wemake minimal assumptions regarding b20, the marginal density ofW : we assume that b0 is a member of the space B,
where

B =


b ∈ L2(Rp, λ) : b2(w) > 0,


Rp

b2(w)dw = 1

,

and the additional identification assumption that E

(W − E [W |X0])(W − E [W |X0])′


exists and is nonsingular (one could

assume only a generalized inverse, as in [26] for a model similar to (1.1)). Assume that γ0 ∈ Γ , where

Γ =


γ : R × Rp

→ R : γ (u|W ) = γ (u|X ′θ0, Z), γ 2(u|W ) > 0,


R
γ 2(u|W )du = 1,

γ (u|W ) is bounded and continuous, and


R


γ ′(u|W )

2 du < ∞, allw.p.1


where γ ′ refers to a partial derivative with respect to u — that is, γ ′(u|w) = ∂γ (u|w)/∂u. Further conditions that γ0 must
satisfy will be specified below, depending on the identification condition imposed on ε. Because of the aforementioned
equation of q0 with γ0, the space of functions Q ∋ q is essentially the same as Γ described here, and we simply rely on Γ as
the relevant space.

To derive a semiparametric efficiency bound for this model, we follow the strategy of [22] — in order to consider the
likelihood functions of one-dimensional submodels local to the true model, we organize local deviations from the model
using real-valued t ∈ [0, t0] for some t0 > 0. Let ξ := (θ ′, β ′)′, and consider a curve t → (ξt , gt , γt , bt) from [0, t0] into
Rp

× L2(R, λ) × Γ × B that passes through (ξ0, g0, γ0, b0) at t = 0. The score function for the model with respect to t
(treating t as if it were the parameter to be estimated) is

S0 =
2q̇(y|W )
q0(y|W )

+
2ḃ(W )
b0(W )

(2.1)

where q̇ =
d
dt qt(y|W )|t=0 is tangent to qt at t = 0 and all other ‘‘dotted’’ quantities are defined analogously. The Fisher

information for the parameter ξ is

iF = E

S20


= E


4q̇2(y|W )
q20(y|W )

+
4ḃ2(W )
b20(W )


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