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a b s t r a c t

Visualisations of two-way arrays are well-understood. Here, a procedure, with geometric
underpinning, is given for visualising rank-two three-way arrays in two-dimensions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the analysis of multiway tables, model-fitting, interpretation and visualisation of interactions are important phases.
Much of the standard exposition is based on linear models, generalised linear models [16], or generalised additive mod-
els [11]. In all such models, the estimation of additive parameters, which may include additive interaction terms, is well
understood, but they are not conducive to visualisation. As early as [5], multiplicative/additive parametrisations were
considered but because of computational limitations it was not until the computer revolution that they became popular,
especially in genotype–environment studies. The estimates of biadditivemodelmultiplicative parameters are routinely visu-
alised inmaps of two sets of points; one arising from the row-parameters and the other from the column-parameters. These
biplot maps greatly help the interpretation of interactions between two factors. Usually, such maps are two-dimensional;
though higher dimensional biadditive fits are easy to compute they are less easy to interpret by visual inspection. For a brief
discussion of the term biadditive and its extension to triadditive as used below, see [4].

Here we discuss one possibility for mapping three-factor multiplicative interactions. As with visualisations of two-way
arrays, our methods are rooted in Euclidean geometry, orthogonal projections and calibrated axes. Reference to these topics
and theirmathematical derivations can be found in, e.g., [15,7]. Consider a decomposition of a three-way arrayX = {xijk} (i =

1, . . . , I; j = 1, . . . , J; k = 1, . . . , K):

xijk =

R
r=1

uirvjrwkr (1)

which has the form of a Singular Value Decomposition of a matrix generalised to three-way arrays, although crucially with-
out its nice orthogonal least squares properties.
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Fig. 1. Rank one visualisation in three dimensions. The value xijk is the volume of the tetrahedron with vertices O, Pi, Pj, Pk .

We adopt the terminology introduced by [14] of referring to a decomposition (1) as having rank R when it cannot be
written in fewer terms. A growing literature on three-way rank has been summarised by [18], though it has little overlap
with this paper. The basic algorithm for fitting (1)was independently due to [2,10], who termed it Candecomp and PARAFAC,
respectively, although the basic idea goes back 43 years earlier [12]. Examples of the varieties of ways that three-way ar-
rays may arise in applications can be found in [13,17]. Here, the neutral term ‘‘array’’ is used as an omnibus term to cover
cross-classified tables, sets of data-matrices, configuration matrices and other three-way constructs. A three-way array X
may represent raw data, or it may have been derived as an approximation to raw data, or it may be a term in some, possibly
extensive, model. Thus, although one could analyse any rank-2 three-way array as raw data, often some preprocessing is
required, as in our example below. All we seek here is a good visualisation of X, however it may have been derived.

We define Uwith columns {ui},Vwith columns {vj}, andWwith columns {wk}, each with R columns. For reasons made
clear below, we assume without loss of generality that I ≤ J ≤ K . Although matrices written U and V are often associated
with expositions of the SVD, expressed in orthogonal forms, we emphasise here that no such restrictions apply in the
following.

The paper is structured as follows. Section 2 gives (i) details of what is required for computations and (ii) the geometric
and algebraic underpinning. Section 3 gives an example of our method and we finish with a discussion in Section 4.

2. Visualisation

It is clear from the previous section that visualisation is important in the interpretation of two-way arrays. Below, we
explore to what extent three-way arrays may be visualised in two dimensions.

2.1. Basic method

In the rank one case (R = 1), the points for ui1 (i = 1, . . . , I); vj1 (j = 1, . . . , J); wk1 (k = 1, . . . , K) may be placed on
separate orthogonal coordinate axes, which we shall label u, v and w. Then, xijk = ui1vj1wk1 is simply proportional to the
volume of the tetrahedron with the three points Pi = (ui1, 0, 0), Pj = (0, vj1, 0), Pk = (0, 0, wk1) and the origin as vertices
cf. [7], as shown in Fig. 1.

When R = 2, we may inspect the two-dimensional sets of coordinates U, V and W but this ignores intrinsic three-way
information. Then, one way of proceeding is to write

xijk = ui1vj1w1 + ui2vj2w2 (2)
where (w1, w2) takes on the values (wk1, wk2) as k varies in the range (1, . . . , K) while i and j remain fixed. The line
represented by (2) may be envisaged in the two-dimensional plane of the K coordinates comprising the rows ofW. We term

(ui1vj1)w1 + (ui2vj2)w2 = 0
the zero line. The (Euclidean) distance of any point (wk1, wk2) from the zero line is

κij(ui1vj1wk1 + ui2vj2wk2)

which is proportional to the required triadditive formwith R = 2. The factor κij ensures that the coefficients of (w1, w2) are
normalised in the form of direction-cosines, as is required, and is given by κ−2

ij = (ui1vj1)
2
+(ui2vj2)

2. When different values
k′ are used, the lines (2) remain parallel, i and j remaining fixed. The distance from the zero line increases with xijk. When
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