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a b s t r a c t

We use generalised biplots to develop the important special case of (i) when all
variables are categorical and (ii) the samples fall into K recognised groups. We term this
Categorical Canonical Variate Analysis (CatCVA), because it has similar characteristics to
Rao’s Canonical Variate Analysis (CVA), especially its visual aspects. It allows centroids of
groups to be exhibited in increasing numbers of dimensions, together with information on
within-group sample variation. Variables are represented by category-level-points (CLPs)
which are a counterpart of numerically calibrated biplot axes for quantitative variables.
Mechanisms are provided for relating the samples to their category levels, for giving convex
regions to help predict categories, and for adding new samples. Inter-sample distance may
bemeasured by any Euclidean embeddable distance. Computation isminimised byworking
in the K − 1 dimensional space containing the group centroids.

The methodology is illustrated by an example with three groups and 37 samples but
the number of samples size is not a serious limitation. The visualisation of group structure
is the main focus of this paper; computational efficiency is a bonus.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the multidimensional scaling of a dissimilarity matrix, the pairwise differences between n samples are mapped into
n points in some small number of dimensions, r , usually two. Many methods of multivariate analysis fall into a framework,
which we term Analysis of Distance (AoD), where the dissimilarity matrix has been derived from a data matrix X : n × p
of continuous or categorical variables. The important word in the last sentence is ‘‘derived’’ which, of course includes the
identity transformation. For continuous variables the display can be augmented by p linear axes or, less usually, p nonlinear
trajectories. The resulting display is a biplot interpreted by evaluating inner-products, either directly or, we think more
conveniently, by calibrating the axes in the conventional way for coordinate axes. In contrast, a categorical variable j, say,
has a finite number of category levels Lj, say, that cannot be handled in the same way as continuous variables. Rather,
each category level must be displayed as a single point, known as a category level point or CLP and thus, the jth variable is
represented by Lj CLPs. All p categorical variables generate a total of L = L1 + L2 + · · · + Lp CLPs. A general methodology
for CLPs has been given by Gower [4], Gower and Hand [5] and Gower, Lubbe and Le Roux [9], giving analytical properties
and examples. The essential thing to recall is that while axes (whether linear or nonlinear) provide a reference system for
quantitative variables, CLPs provide a similar reference system for categorical variables. In this paper the CLPs are derived
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from Generalised Biplot theory (see the above references); for a discussion of alternative ways of determining Category
Points see the discussion of Section 5.

In this paper we are concerned with what modifications are required when
(i) all p variables are categorical and
(ii) the n samples in X fall into K groups.

Grouped sample-structure is a feature of Canonical Variate Analysis (CVA) of continuous variables and indeed is one of the
most useful tools of multivariate analysis (see e.g. [10]). CVA is based on Mahalanobis distance but there have been many
generalisations based on continuous variables using general definitions of distance between grouped samples. Gower, Le
Roux and Lubbe [8] give an up-to-date account of this work in the context of AoD and provide a comprehensive list of
citations. A similar procedure for categorical variables is described below which, although based on similar fundamental
geometric ideas, has a very different manifestation when expressed in algebraic form. We term this variant of AoD
Categorical CVA or, in short, CatCVA. It is to be noted that here we are not concerned with canonical correlation or any
of its cognates such as OVERALS (see [2]) but confine our attention to the grouping of samples and not to the grouping
of variables. Although some forms of Canonical Correlation Analysis (CCA) share some of the algebra of CVA, the two are
statistically very different; Gardner, Gower, and Le Roux [1] highlight the difference in an analysis which finds a synthesis
between CCA and CVA. Also, we are primarily concerned with between group differences and have only secondary concerns
with within-group variability. In this we are in line with classical CVA and, as with CVA itself, our results are not relevant
for a detailed analysis of intra-group differences.

Categorical variables are familiar in correspondence analysis, and especially multiple correspondence analysis, but
categorical variables are more rarely encountered with grouped samples. We suspect that this could be because there is
a dearth of suitable methodology; we hope that this paper will encourage greater use of multivariate categorical variables
in the context of grouped samples.

As a referee pointed out, categorical variables are inherent even in classical CVA, because the groups themselves define
categories (e.g. the three Ocotea species discussed in Section 4). Indeed, categorical variables label rows, columns, etc. of all
multiway tables, whether the bodies of the tables give values of numerical, or in our case, categorical variables. Often the
body of the table can be considered as observed/response variables and the labelling information as allocated dependent
variables, though the distinction is by no means absolute.

First, we introduce our notation; then in Section 2we review the representation of categorical variables in the ungrouped
case. Finally, in Section 3 we show how the methodology of the grouped case can be developed to accommodate both
between and within group information. An example is discussed in Section 4.

Notation
X ≡ {xij} is an n × p data-matrix for n cases (samples) and p categorical variables.
Y ≡ {yij} is an n × m matrix of coordinates.
G ≡ {gik} is an n× K matrix indicating membership of K groups. Element gik = 1 when the ith case

is in group k, else gik = 0.
gk is the kth column of G.
C = [C1, C2, . . . , Cp] is an n × L indicator matrix associated with the p categorical variables where Cj : n × Lj

denotes the indicator matrix associated with the jth variable having Lj different category
levels and L = L1 + L2 + · · · + Lp.

Zj is an m × n matrix associated with the jth categorical variable. The n columns of Z refer
to the Lj category level points (CLPs), each repeated wherever it appears in the ith
sample. Thus there are only Lj distinct columns of Zj. The m rows of Z refer to the
dimension of the space containing the CLPs. In what followsm takes on the value
n − 1, K − 1 or r < m depending on the context.

1 is a column-vector of units, whose length may be indicated by a suffix.
d2ii′ is the squared distance between cases i and i′. It is assumed that the distance is additive

satisfying d2ii′ =
p

j=1 f

xij, xi′j


.

−
1
2d

2
ii′ is termed ddistance as an abbreviation for −1/2 times the squared distance.

D ≡ {−
1
2d

2
ii′} is an n × n ddistancematrix (not necessarily Pythagorean) generated between the rows

of X.
Dj ≡ {−

1
2 f (xij, xi′j)} is an n × n ddistancematrix (not necessarily Pythagorean) generated by the n rows and

jth variable (column) of X. Because distances are additive it follows that D =
p

j=1 Dj.
ei denotes an n-vector with its ith element equal to unity, else zero.

2. Review of biplots for categorical variables in the ungrouped case

In this sectionwe summarisewell-known results available e.g. in [9]. These are needed as the starting point for the K ≥ 2
group extensions discussed in Section 3 with which the results of Section 2 may be compared.
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