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a b s t r a c t

When two survival functions belong to a location–scale family of distributions, and the
available two-sample data are each right censored, the location and scale parameters can
be estimated using a minimum distance criterion combined with Kaplan–Meier quantiles.
In this paper, it is shown that using the estimated quantiles from a semiparametric random
censorship framework produces improved parameter estimates. The semiparametric
framework was originally proposed for the one-sample case (Dikta, 1998), and uses
a model for the conditional probability that an observation is uncensored given the
observed minimum. The extension to the two-sample setting assumes the availability of
good fitting models for the group-specific conditional probabilities. When the models are
correctly specified for each group, the new location and scale estimators are shown to be
asymptotically as or more efficient than the estimators obtained using the Kaplan–Meier
based quantiles. Individual and joint confidence intervals for the parameters are developed.
Simulation studies show that the proposed method produces confidence intervals that
have correct empirical coverage and that are more informative. The proposed method is
illustrated using two real data sets.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In statistical analysis of survival data, it is often of interest to determine the difference, if any, between two treatment
effects.When the treatment-specific populations are known to be each normally distributed andwhen the two-sample data
are each completely uncensored, the standard t-test can be used to discriminate between the treatments. But the normal
family is only one member of the location–scale family of distributions, among several others, and the t-test would be
inadequate for non-normal families. There may be the additional complication due to censoring which the t-test was not
designed to handle. On the other hand, when the underlying distributions are unknown, theWilcoxon test is used. However,
it must be noted that, when the samples come from a location–scale family of distributions, an inferential method that also
incorporates the availablemodel information into the analysis should performbetter. Indeed,when distributional difference
in location and scale is suspected, the Generalized Wilcoxon test for detecting differences is inadequate, see p. 211 of [13].

For the general two-sample problem, the group-specific empirical distribution functions, or their Kaplan–Meier (KM)
counterparts in the case of the random censorship model (RCM), provide the basic resource for inference. For two-sample
location–scale, Zhang and Li [25] suggested a heuristic method using simple quantiles for inference. Note that in this setting
the two continuous distribution functions F1 and F2 are related through the equation F1(t) = F2(a + bt), where a ∈ R and
b > 0.
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For RCM two-sample location–scale inference, the standard method is to employ a minimum distance criterion, more
specifically, the Cramér–von Mises type discrepancy involving either the KM estimators of the survival functions, Si(t) =

1 − Fi(t), i = 1, 2, or their quantiles. Hsieh [12], however, constructed a regression setup that was based on the KM
quantile process and showed that his generalized least squares estimator is semiparametric efficient; see also [11] for
the uncensored case. Some limitations, including practical utility of Hsieh’s estimator, are pointed out by Potgieter and
Lombard [19], however. Koul and Yang [15] applied the Cramér–von Mises type discrepancy to the two KM estimators but
focused only on the two-sample scalemodel; the extension to the location–scalemodel can be complicated. The Cramér–von
Mises typediscrepancy combinedwith quantiles is seen to be a very convenientmethod for estimating themodel parameters
a and b, as evidenced by the fact that, under the location–scale model assumption, the quantile functions for the two
groups at each point t ∈ (0, 1) are linearly related [18,26,19]; that is, Q2(t) = a + bQ1(t), so that minimizing Ŝ(a, b), an
estimate of

S(a, b) =


{Q2(s)− a − bQ1(s)}2 dG(s) := E


{Q2 − a − bQ1}

2 ,G

, (1.1)

where G(s) is a positive measure on (0, 1), presents a viable option, unlike the approach founded on the KM estimators of
Si(t), i = 1, 2. In Eq. (1.1), E(·, ·) denotes the integral of the first argument with respect to the second argument. Zhang and
Yu [26] developed estimation of θ = (a, b)′ using Eq. (1.1), where they plugged in the KM quantile function estimators to
obtain Ŝ(a, b), which they minimized to yield θn, their estimator of θ. Under some regularity conditions, Zhang and Yu [26]
derived the large sample distribution of θn via the delta method combined with standard large sample theory for weighted
KM statistics.

In this paper, we showcase the efficacy of utilizing alternate quantiles, obtained from semiparametric survival function
estimators, for two-sample location–scale inference. These survival function estimators arise from the framework of
semiparametric randomcensorshipmodels, SRCMs henceforth, introduced byDikta [4]. Let δi denote the censoring indicator
for the ith group, i = 1, 2. Start with the parametric model mi(t, γ i), where mi(t, γ i0) = E(δi|Xi = t), and γ i0 is the true
value of γ i. Use the ith group sample data to obtain γ̂ i, the maximum likelihood estimator (MLE) of γ i ∈ Γi ⊂ Rk. The
estimated mi is used as a ‘‘surrogate’’ for the censoring indicator in the ith group, leading to a semiparametric estimator
of the group-specific subdistribution function corresponding to uncensored failures. Plugging in this last estimator and the
usual ‘‘at-risk’’ function into a standard sequence of mappings [9] yields the group-specific SRCM-based survival function
estimator, see Section 2.1 for details.

There are compelling reasons why it would be desirable to incorporate SRCMs into the two-sample location–scale
analysis. The KM estimator, although the primary choice under the RCM, ceases to provide optimal performance under
the framework of SRCMs. Specifically, Dikta [4] proved that, under correct model specification, the asymptotic variance of
the SRCM-based survival function estimator is no greater than that of the KM estimator, with equality attained only in rare
and unrealistic cases. In fact, from amore general result derived by Dikta [5] recently, it is now evident that the SRCM-based
survival function estimator is asymptotically efficient with respect to the class of all regular estimators under the SRCM. It
stands to reason that, if proper parametric models can be identified for each group-specific conditional probability function,
inference for the censored two-sample location–scale problem can be improved. Note that the function to be estimated from
binary response data is a ‘‘success probability’’ function, forwhichmodels are readily available. In reality, fitting the standard
Cauchy model to estimate this function appears to produce better estimates most of the times, see [23,17]; see Section 5 for
discussion about various possible models for analyzing the binary response data. Furthermore, when the censoring is rather
heavy, the KM estimator has fewer jumps leading to a patchy result, which is not a problem with an SRCM-incorporated
analysis. Finally, when the censoring indicators are missing at random for a subset of the study subjects [21], RCM-based
inference for the location–scale problembecomes difficult comparedwith our proposed SRCM-based inference. Indeed,with
minor modifications, the SRCMs approach readily applies to the case of missing censoring indicators, see Section 5 for some
discussion.

We propose to plug in the SRCM-based quantiles into Eq. (1.1) and obtain θ̂ as the minimizer of the resulting criterion
function. Under mostly the same regularity conditions as in [26] we derive the limiting distribution of θ̂, from which we
are able to obtain confidence intervals for a, b or any function of the two parameters thereof. Numerical results reported
in Section 3 indicate that fitting the standard probit or Cauchy link for the binary response data produces estimators with
approximately correct coverage and relative reduction over the estimators based on KMquantiles amounting to between 5%
and 15%. The Cauchy fit provides the overall coverage closest to the nominal value. A power study confirms the superiority of
SRCMs over RCMs. A theoretical analysis of the asymptotic variances reinforces the numerical evidence. Specifically, when
themodels are correctly specified, we show that the proposed estimators are asymptotically as ormore efficient than Zhang
and Yu’s [26] estimators. Thus, there appears to be strong theoretical and numerical support for SRCMs to be incorporated
into censored two-sample location–scale analysis.

The paper is organized as follows. In Section 2, we review the SRCMs and then present our proposed approach. In
Section 3, we present our simulation results. In Section 4, we illustrate our method using a mouse leukemia data set [13]
and an acute myelogenous data set [14]. In Section 5, we give some concluding remarks.
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