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a b s t r a c t

In this paper, we focus on the variable selection for semiparametric varying coefficient par-
tially linear models with longitudinal data. A new variable selection procedure is proposed
based on the combination of the basis function approximations and quadratic inference
functions. The proposed procedure simultaneously selects significant variables in the para-
metric components and the nonparametric components. With appropriate selection of the
tuning parameters, we establish the consistency and asymptotic normality of the resulting
estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite
sample performance of the proposed variable selection procedure.We further illustrate the
proposed procedure by an application.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

As introduced in [6,13], the varying coefficient model provides a natural and useful extension of the classical linear
regression model by allowing the regression coefficients to depend on certain covariates. Due to its flexibility to explore
the dynamic features which may exist in the data and its easy interpretation, the varying coefficient model has been widely
applied in many scientific areas. It has also experienced rapid developments in both theory and methodology, see [11]
for a comprehensive survey. Zhang et al. [30] noticed that in practice some of the coefficients are constant rather than
varying andproposed the so-called semiparametric varying coefficient partially linearmodels. Statistically, treating constant
coefficients as varying will degrade estimation efficiency. On the other hand, longitudinal data occur very frequently in
biomedical studies. Qu et al. [21] proposed amethod of quadratic inference functions (QIF). It avoids estimating the nuisance
correlation structure parameters by assuming that the inverse of the working correlation matrix can be approximated by a
linear combination of several known basis matrices. The QIF can efficiently take the within-cluster correlation into account
and is more efficient than the GEE approach when the working correlation is misspecified. Qu and Li [20] applied the QIF
method to varying coefficient models for longitudinal data. Bai et al. [3] extended the QIF method to the semiparametric
partial linear model. Dziak et al. [7] gave an overview on QIF approaches for longitudinal data.

It is well known, variable selection is an important topic in all regression analyses, therefore, many procedures and
criteria have been developed for this, especially for linear regression analysis. For example, some simple and commonly
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used approaches include the stepwise selection and subset selection. Other selection criteria include Akaike [2] information
criterion (AIC), Mallows’ [19] Cp and Bayesian information criterion (BIC; Schwarz [23]). Nevertheless, those selection
methods suffer from expensive computational costs. As computational efficiency is more desirable in many situations,
various shrinkage methods have been developed, which include but are not limited to: the nonnegative garrotte [5], the
LASSO [24], the bridge regression [12], the SCAD [9], and the one-step sparse estimator [34]. Furthermore, a number of
works have also been done to extend the shrinkage estimation methods to nonparametric models. For example, Fan and
Li [10] proposed to use the SCAD penalty for variable selection in longitudinal data analysis. Li and Liang [17] carefully
studied variable selection for varying coefficient partially linear models, where the parametric components are identified
via the SCAD [9], but the nonparametric components are selected via a generalized likelihood ratio test instead of a shrinkage
method. Recently, Zhao and Xue [31] proposed a variable selection method to select significant variables in the parametric
components and the nonparametric components simultaneously. Zhao and Xue [32] developed the variable selection
procedure by combining basis function approximations for semiparametric varying coefficient partially linear models when
the covariates in the parametric and nonparametric components are all measured with errors.

Variousmethods are available for fitting the semiparametric varying coefficient partially linearmodels with longitudinal
data, such as, the kernel smoothing method, empirical likelihood method and the penalized spline method. Ahmad et al. [1]
proposed a general series method to estimate semiparametric varying coefficient partially linear models. Fan and Huang [8]
developed a profile least-square technique for the estimation of the parametric component. Xue and Zhu [29] considered the
empirical likelihood inference for a varying coefficient model with longitudinal data. In addition, Wang et al. [25] proposed
a group SCAD procedure for variable selection of pure varying coefficient models with longitudinal data.

In this paper, we extend the group SCAD variable selection procedure to the semiparametric varying coefficient partially
linearmodelswith longitudinal data, and propose a variable selection procedure based on the basis function approximations
with quadratic inference functions. Furthermore, with proper choice of tuning parameters, we show that this variable
selection procedure is consistent, and the estimators of regression coefficients have oracle property. Here, the oracle
property means that the estimators of the nonparametric components achieve the optimal convergence rate, and the
estimators of the parametric components have the same asymptotic distribution as that based on the correct submodel.

We adopt the penalized QIF method for semiparametric varying coefficient partially linear models. Compared with Zhao
and Xue [31,32], we considered the longitudinal data and incorporated the correlation structure. In contrast, although Xue
et al. [28] considered the penalized QIF for the generalized additivemodel, themodel they considered is just a special case of
semiparametric varying coefficient model. In addition, they just selected the nonparametric function. However, our method
can select significant variables in the parametric components and nonparametric components simultaneously.

The rest of this paper is organized as follows. In Section 2 we first propose a variable selection procedure for the
semiparametric varying coefficient partially linear models with longitudinal data. Asymptotic properties of the resulting
estimators are considered in Section 3. In Section 4 we give the computation of the penalized QIF estimator. In Section 5 we
carry out simulation studies to assess the finite sample performance of the method. We further illustrate the proposed
methodology via a real data analysis in Section 6. The article is concluded with a brief discussion in Section 7. Some
assumptions and the technical proofs of all asymptotic results are provided in the Appendix.

2. Variable selection based quadratic inference functions

Consider a longitudinal study with n subjects and mi observations over time for the ith subject (i = 1, . . . , n) for
a total of N =

n
i=1 mi observations. Each observation consists of a response variable Yij and the covariate vectors

Xij ∈ Rp, Zij ∈ Rq,Uij ∈ R taken from the i subject. We assume that the observations from different subjects are independent,
but that those within the same subject are dependent. The semiparametric varying coefficient partially linear models with
longitudinal data have the form

Yij = XT
ij β + ZT

ij α(Uij) + εij, i = 1, . . . , n, j = 1, . . . ,mi, (2.1)

where β = (β1, . . . , βp) is a p × 1 vector of unknown regression coefficients, α(u) = (α1(u), . . . , αq(u))T is a q × 1 vector
of unknown functions. Here, we assume that u ranges over a nondegenerate compact interval, without loss of generality,
that is assumed to be the unit interval [0, 1]. We further give assumptions on the first twomoments of the observation {Yij}.
Let E(Yij) = µij and Var(Yij) = υ(µij), where υ(·) is a known variance function.

Following He et al. [15], we replace α(·) by its basis function approximations. More specifically, let B(u) = (B1(u), . . . ,
BL(u))T be B-spline basis functions with the order of M , where L = K + M , and K is the number of interior knots. We
use the B-spline basis functions because they have bounded support and are numerically stable [22]. The spline approach
also treats a non-parametric function as a linear function with the basis functions as pseudodesign variables, and thus any
computational algorithmdeveloped for the generalized linearmodels can be used for the semiparametric varying coefficient
partially linear models. Of course, the B-spline is not the only choice of the nonparametric approximation method here. For
example, Qu and Li [20] applied the QIF approach and the penalized spline approximation method together with varying
coefficient models for longitudinal data. Then, similar to He et al. [14], αk(u) can be approximated by

αk(u) ≈ B(u)Tγk, k = 1, . . . , q, (2.2)
where γk is a L × 1 vector of unknown regression coefficients.
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