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a b s t r a c t

This paper proposes two model selection criteria for identifying relevant predictors in the
high-dimensional multivariate linear regression analysis. The proposed criteria are based
on a Lasso type penalized likelihood function to allow the high-dimensionality. Under the
asymptotic framework that the dimension of multiple responses goes to infinity while the
maximum size of candidate models has smaller order of the sample size, it is shown that
the proposed criteria have themodel selection consistency, that is, they can asymptotically
pick out the true model. Simulation studies show that the proposed criteria outperform
existing criteria when the dimension of multiple responses is large.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Multivariate linear regression is fundamental in statistical analysis, which is applied to biometrics, econometrics, mar-
keting research, engineering, chemometrics andmany other related research fields to study relationships betweenmultiple
responses and a set of predictors. Model selection criteria which identify the relevant predictors play an important role in
these applications. By advances of information technology and data base system, however, the high-dimensional data in
which the sample size n is comparable with the number of predictors pn and the dimension of multiple responses qn or
larger than them often appear in these applications. For instance, in biometrics, one may wish to clarify the relationship be-
tween the RNA levels and the DNA copy number (Peng et al. [16]) or identify the differentially expressed genes among some
groups (Xu and Cui [25]). In the former case, n is less than both pn and qn while nmay be less than only qn in the latter case.

Classical model selection criteria such as AIC (Akaike [1]), BIC (Schwarz [21]), GIC (Nishii [14]) including AIC and BIC as a
special case and Mallows Cp criterion (Mallows [13]) are not applicable to the high-dimensional data since these methods
have developed in the asymptotic framework n→∞with both pn and qn are fixed. To handle the high-dimensionality, we
need to consider an asymptotic framework where both pn and qn become to be large as n increases. Recently, Yamamura
et al. [26] have derived an AIC type criterion when (n, qn) → ∞ and n < qn based on a ridge estimator proposed by
Srivastava and Kubokawa [22] and Kubokawa and Srivastava [10]. Similarly, Kubokawa and Srivastava [11] have also derived
an AIC type criterion and a Mallows Cp type criterion when qn/n → γ ∈ (0, 1). On the other hand, Yanagihara et al. [27]
have proved the consistency property of the classical AIC when qn/n→ γ ∈ (0, 1). It has not been shown whether or not
the criteria given by Yamamura et al. [26] and Kubokawa and Srivastava [11] have the consistency property.
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In the above literature on high-dimensional information criteria, they restrict that the size of considerable candidate
models is not larger than nwhile nmay be less than pn. It is natural in high-dimensional data to assume that the number of
important predictors is not so large even though pn is larger than n. This type of restriction has also been imposed by Chen
and Chen [3] and Kim et al. [9] in the linear regression model. Foygel and Drton [6] and Chen and Chen [4] have imposed it
in the generalized linear regression model and the Gaussian graphical model, respectively.

In this paper, we propose two GIC type criteria with consistency property which allow n < pn, n < qn and qn/n→∞.
To the best of our knowledge, there are no model selection criteria in such a case. In order to allow n < pn we search the
truemodel among restricted candidate models with smaller size than n, similarly as the previous work. To allow the rest we
use a sparse precision matrix estimator based on the penalized likelihood with the Lasso penalty on off-diagonal elements
of precision matrices. In the last decades, various authors have investigated the estimation of sparse precision matrix with
the Lasso penalty. For instance, Yuan and Lin [28], Friedman et al. [7] and Scheinberg et al. [19] have provided algorithms to
optimize the Lasso penalized likelihood. Rothman et al. [17] and Lam and Fan [12] have studied asymptotic properties such
as the convergence rate and the support recovery.

It is worth pointing out that the model selection is closely related to the tuning parameter selection in the penalized
likelihood estimation since a model is selected when a tuning parameter is so. In the linear regression, Wang et al. [24]
investigate the tuning parameter selector and its selection consistency while Zhang et al. [30] and Fan and Tang [5] do so
in the generalized linear regression. In the multivariate linear regression, Rothman et al. [18] penalize both the coefficient
matrix and the precision matrix with the Lasso penalty, and the tuning parameters for them are selected by the cross-
validation. Similar procedures can be seen in Peng et al. [16] and Obozinski et al. [15], but there are no theoretical guarantees
about the tuning parameter selection.

The organization of the paper is as follows. In Section 2, we introduce the classical GIC and then propose two GIC type
criteria for high-dimensional datawhichwedenote byhigh-dimensionalGIC (HGIC), based on the Lassopenalized likelihood.
The consistency property of the two HGIC under a high-dimensional asymptotic framework is provided in Section 3. In
Section 4, we compare the two HGIC with existing criteria numerically. All the proofs are given in Section 5.

Here, we summarize the notations used throughout the paper. For a real matrix A = (aij), we define the element-wise
infinity norm as ∥A∥∞ = max |aij|, the element-wise ℓ1 norm as ∥A∥1 =


|aij|, the operator norm as ∥A∥ = λ

1/2
max(ATA)

and the Frobenius norm as ∥A∥F = (


a2ij)
1/2 where λmax(·) denotes the largest eigenvalue. We also define the smallest

eigenvalue as λmin(·). To denote the (i, j) element of A, we write (A)ij. When A is symmetric, we define A− = A − diag(A)
where diag(A) denotes the diagonal matrix of A. For a set α, we write |α| to denote the cardinality of α.

2. HGIC in multivariate regression model

A multivariate linear regression model is given by

yi = B∗Txi + εi, i = 1, . . . , n, (2.1)

where yi = (yi1, . . . , yiqn)
T is a response vector, B∗ is an unknown pn × qn non-random coefficient matrix, xi = (xi1, . . . ,

xipn)
T is a set of predictors and εi = (εi1, . . . , εiqn)

T is a randomvector drawn froma qn-dimensionalmultivariate normal dis-
tributionwith themean vector0, the covariancematrix6∗ and the precisionmatrix�∗ = 6∗−1, whichwedenoteNqn(0, 6∗)

hereafter. Assume that y1, . . . , yn are independent and6∗ is positive definite. Let Y = (y1, . . . , yn)T ,X = (x1, . . . , xn)T and
E = (ε1, . . . , εn)

T , then the model (2.1) can be given by the following matrix form:

Y = XB∗ + E .

The log-likelihood function for the coefficient and the precision matrix multiplying (−2)/n and ignoring the constant
terms is given by

L(B, �) =
1
n
tr�(Y − XB)T (Y − XB)− log det(�),

where B is a pn×qn coefficient matrix and � is a qn×qn precisionmatrix. Assume that the true coefficient matrix B∗ = (b∗ij)
has a row support

α∗n = {1 ≤ i ≤ pn|b∗ij ≠ 0 for some 1 ≤ j ≤ qn}

with |α∗n | elements. Thus, the ith predictor is irrelevant for all responses if i ∉ α∗n . Note that α∗n is a subset of {1, . . . , pn}
and usually unknown. We wish to find the true support α∗n , rather than the values of B∗. This problem can be understood
as a model selection problem to find the true model α∗n from a set of possible candidate models αn’s where αn is a subset
of {1, . . . , pn}. The candidate model αn can also be regarded as the row support of a coefficient matrix. Now we define the
parameter spaces of B over the given candidate model αn as

Θ(αn) = {B = (bij) ∈ Rpn×qn | bi1 = · · · = biqn = 0 for i ∉ αn}.

The parameter space of � is also defined as

Ξ = {� ∈ Rqn×qn |� = �T
}.
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