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a b s t r a c t

Principal Components are usually hard to interpret. Sparseness is considered as one way
to improve interpretability, and thus a trade-off between variance explained by the com-
ponents and sparseness is frequently sought. In this note we address the problem of si-
multaneous maximization of variance explained and sparseness, and a heuristic method
is proposed. It is shown that recent proposals in the literature may yield dominated so-
lutions, in the sense that other components, found with our procedure, may exist which
explain more variance and at the same time are sparser.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Principal Components Analysis (PCA) is a classical dimension reduction technique in multivariate data analysis, intro-
duced by Pearson [13]. The goal of PCA is to find a set of orthonormal vectors minimizing the sum of squares of distances
between a set of points and their projections on the vector space spanned by such orthonormal vectors. In other words, in
PCA k orthonormal vectors c1, . . . , ck are sought by solving the following optimization problem:

min
c1,...,ck: orthonormal

1
n

n
h=1

uh − π{c1,...,ck}(uh)
2
2 , (1)

where {u1, . . . , un} ∈ Rp is the set of points, and π{c1,...,ck} denotes the projection onto the linear space L({c1, . . . , ck})
spanned by the vectors c1, . . . , ck, k ≤ p. The optimal solutions, c1, . . . , ck, are called the Principal Components (PCs). In
thisworkwe suppose that khas been fixed in advance using anymethod, such as e.g. the Scree Plot, PC rank trace, andKaiser’s
rule, Izenman [6].

The so-obtained PCs enjoy important properties, such as the fact that the projection of the points u1, . . . , un have un-
correlated components, see [8]. Moreover, the optimal solution of Problem (1) admits an interpretation in terms of the
variance explained by the projections. However, the most important problem of PCA is the lack of interpretability of the
results, e.g. [15,16], in part due to the fact that PCs have most components at nonzero value, i.e., most original variables
are related with each PC. For this reason, several authors have advocated the use of simpler components (i.e., orthonormal
vectors with a few nonzero entries), at the expense of losing variance explained or other properties, such as uncorrelation
of the projections. Sparseness is usually considered to be a tool to make interpretation of the components easier.
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A first proposal, following the idea of making PCs sparser, and thus potentially more interpretable, is to build compo-
nents from PCs, but setting to zero all coefficients which, in absolute value, are below a threshold. However, this intuitively
appealing idea may be misleading, see [3]. Other related criteria are presented in [9], called SCoTLASS, Zou et al. [18] or
d’Aspremont et al. [5]. Since interpretability is a subjective criterion, these papers, as we also do, assume that sparseness
can be seen as potential interpretability, and thusmaximizing sparseness will make it likely to understand and interpret the
output of the procedure.

Qi et al. [14] proposed another methodology in which the trade off between sparseness and explanation of the variance
is obtained by introducing a new norm, ∥ · ∥(λ), which depends on a parameter λ ∈ [0, 1]. The extreme values of ∥ · ∥(λ)

correspond to the ℓ2 distance (associated with error minimization) and the ℓ1 distance (associated with sparseness, as in
the lasso, Tibshirani [17]). Sparse PCs are calculated sequentially by imposing either orthonormality or uncorrelation of the
components. Their approach can be summarized as follows.

Let us introduce the following norm in Rp, ∥ · ∥(λ), λ ∈ [0, 1] defined as

∥c∥(λ) =

(1 − λ)∥c∥2

2 + λ∥c∥2
1

1/2
, c ∈ Rp

where ∥ · ∥2 denotes the ℓ2-norm and ∥ · ∥1 denotes the ℓ1-norm.
The first sparse PC is obtained by solving the optimization problem

max
c⊤

1 · V · c1
∥c1∥2

(λ1)

s.t. {∥c1∥2 = 1,

where V is the p × p covariance (or correlation) matrix and λ1 ∈ [0, 1] is a parameter which must be fixed and trades off
somehow variance explained and sparseness.

Higher order sparse PCs are obtained as the solution of two alternative problems, depending whether orthogonality or
uncorrelation on the PCs is imposed.

Firstly, if orthogonality is sought and cj, j = 1, . . . , k − 1, are known, the k-th PC is obtained by solving

max
c⊤

k · V · ck
∥ck∥2

(λk)

s.t.

∥ck∥2 = 1
c⊤

j · ck = 0 ∀j = 1, . . . , k − 1.

On the other hand, if uncorrelation of the components is required, the problem considered is

max
c⊤

k · V · ck
∥ck∥2

(λk)

s.t.

∥ck∥2 = 1
c⊤

j · V · ck = 0 ∀j = 1, . . . , k − 1.

An algorithm with good theoretical properties is studied, as well as numerical illustrations using the classical Pitprops
data set, see [7], and a large artificial data set are shown. However, as we show below, solutions obtainedwith this approach
may be dominated, in the sense that other components may exist being sparser and, at the same time, explaining a higher
percentage of variance.

The paper is organized in four more sections. In Section 2 we formulate a sparse version of problem (1) as a biobjective
Mixed Integer Nonlinear Problem (MINLP). The reader is referred to Burer and Letchford [2] for an updated review onMixed
Integer Nonlinear Programming. Problem resolution is described in Section 3. Numerical results are included in Section 4.
Finally, Section 5 includes some conclusions and extensions.

2. Problem statement

We address the problem under consideration by formulating an optimization problem, for which a heuristic method is
proposed. This approach is similar to the methodology proposed in [4]. In such work, a new procedure for achieving sparse-
ness in PCs is proposed by writing an optimization problem in which, on top of deciding the loadings (which are continuous
variables), one has to decide which ones are allowed to take nonzero values. This is done by introducing some binary vari-
ables which allow the user to control how sparse PCs are. The so-obtained nonlinear optimization problemwith continuous
and binary variables is heuristically solved via a Variable Neighborhood Search, Mladenović and Hansen [11].

In this paper, we extend that idea to a more challenging problem, in which both the sparseness of the PCs and variance
explained are simultaneously optimized. This leads to a biobjective problem, which is solved heuristically with a Pairwise
Exchange Method, Nahar et al. [12]. Problem resolution will be dealt in Section 3.
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