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a b s t r a c t

The construction of confidence regions for parameter vectors is a difficult problem in
the nonparametric setting, particularly when the sample size is not large. We focus on
bootstrap ellipsoidal confidence regions. The bootstrap has shown promise in solving this
problem, but empirical evidence often indicates that the bootstrap percentile method has
difficulty in maintaining the correct coverage probability, while the bootstrap percentile-
t method may be unstable, often resulting in very large confidence regions. This paper
considers the smoothed and iterated bootstrap methods to construct the bootstrap per-
centile method ellipsoidal confidence region. The smoothed bootstrap method is based on
a multivariate kernel density estimator. An optimal bandwidth matrix is established for
the smoothed bootstrap procedure that reduces the coverage error of the bootstrap per-
centile method. We also provide an analytical adjustment to the nominal level to reduce
the computational cost of the iterated bootstrapmethod. Simulations demonstrate that the
methods can be successfully applied in practice.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The construction of bootstrap confidence intervals has been studied extensively over the past fewdecades. Early criticism
of the bootstrap percentilemethod (Efron, [4]) led to several improvements of themethodology, including the bias corrected
method (Efron, [5]), the bias-corrected and acceleratedmethod (Efron, [7]), and the studentizedmethod (Efron, [6]).Methods
based on pre-pivoting, the iterated bootstrap, and calibration were developed by Beran [2], Hall [9], and Loh [14]. Hall [10]
provided a systematic method for comparing confidence intervals based on Edgeworth expansion theory. Implementation
of the smoothed bootstrap with the specific purpose of improving the coverage properties of confidence intervals has been
discussed by Guerra, Polansky and Schucany [8], Polansky [16], and Polansky and Schucany [17]. However, multivariate
confidence regions have received limited consideration and it is difficult to extendmost of the existing univariate procedures
directly to the multivariate case.

Let X1, X2, . . . , Xn be a set of independent and identically distributed p-dimensional random vectors following a distribu-
tion F . Let θ = t(F) be a v-dimensional parameter vector, θ̂n is a plug-in estimator of θ , and Ω̂n is a consistent estimator of the
asymptotic covariancematrixΩ of n1/2θ̂n. Assume thatΩ is non-singular. Then a 100α% confidence region for θ has the form

R = {θ̂n − n−1/2Ω̂1/2
n r : r ∈ Rα},

∗ Corresponding author at: Wayne State University, USA.
E-mail address: santughosh001@gmail.com (S. Ghosh).

http://dx.doi.org/10.1016/j.jmva.2014.08.003
0047-259X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2014.08.003
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2014.08.003&domain=pdf
mailto:santughosh001@gmail.com
http://dx.doi.org/10.1016/j.jmva.2014.08.003


172 S. Ghosh, A.M. Polansky / Journal of Multivariate Analysis 132 (2014) 171–182

where Rα ⊂ Rv is any region such that P[
√
nΩ̂−1/2

n (θ̂n − θ) ∈ Rα] = α. The shape of the region R depends on the shape of
the region Rα . In this paper we concentrate on ellipsoidal confidence regions, which are generalizations of univariate sym-
metric confidence intervals. In particular, if Rα is a v-variate sphere centered at the origin, then R becomes an ellipsoidal
confidence region. In practice the bootstrap is often used to estimate Rα .

A simpler method for computing an ellipsoidal confidence region for θ is based on extending the bootstrap percentile
method of Efron [4] to the multivariate case. Let RBP be a bootstrap percentile method ellipsoidal confidence region for θ .
For a given nominal level α, we will prove that

P(θ ∈ RBP) = α + n−1Q (χ2
v,α) + O(n−2), (1.1)

where Q (χ2
v,α) is a polynomial in χ2

v,α . The coefficients of Q (χ2
v,α) are functions of population moments and χ2

v,α is the
α-th quantile of a chi-square distribution with v degrees of freedom. Eq. (1.1) shows that RBP is second-order accurate. Our
empirical studies show that this method is stable, but has poor coverage properties. An alternative method for constructing
an ellipsoidal confidence region for θ is the bootstrap percentile-t method. From an asymptotic viewpoint, the bootstrap
percentile-t method is fourth-order accurate, see Hall [11, Section 4.2]. Our empirical studies show that while the bootstrap
percentile-t method has acceptable coverage probabilities, it can be unstable and can produce large ellipsoidal confidence
regions when the sample size is small.

The natural idea is to improve the coverage probability of RBP . In the univariate setup, the smoothed and iterated boot-
strap methods have potential applications in the construction of confidence intervals. Both of these methods are easily im-
plementable as practical procedures for routine use. To our knowledge, so far the use of the smoothed and iterated bootstrap
methods have not been explored in the case of multivariate regions. To improve the coverage probability of RBP , we con-
sider a multivariate version of the smoothed and iterated bootstrap methods. However, the performance of the smoothed
bootstrap heavily depends on the choice of the bandwidth matrix and the latter method is computationally expensive,
specifically in the multivariate case.

In this paper our contributions are: (i) we show that a bandwidth matrix of order O(1/n) exists that eliminates the n−1-
term from Eq. (1.1). As a result, the bootstrap percentile method based on the smoothed bootstrap with this bandwidth
matrix becomes fourth-order accurate and (ii) an analytical correction is provided to the nominal level in order to avoid the
double bootstrap for constructing the iterated bootstrap percentilemethod ellipsoidal confidence region.We also show that
the resulting region reduces the order of the coverage error of RBP to O(n−2).

The remainder of the paper is organized as follows. Section 2 introduces the smoothed and iterated bootstrap methods
for the mean vector. In Section 3, we extend these methods for a multivariate smooth function of a mean vector. Simulation
results are reported in Section 4. Section 5 concludes and Appendix contains some technical details.

2. Bootstrap confidence regions for a mean vector

Let θ = EF (Xn) be a p-dimensional mean vector of F and assume that the covariance matrix Σ , of F , is positive definite
and unknown. We are interested in constructing an ellipsoidal confidence region for θ . Let

θ̂n = n−1
n

i=1

Xi, and Σ̂n = n−1
n

i=1

(Xi − X̄n)(Xi − X̄n)
′.

To facilitate our discussion of the bootstrap percentile method ellipsoidal confidence region, let X∗

1 , . . . , X∗
n be a random

sample from the empirical distribution F̂n, based on X1, . . . , Xn. Let

θ̂∗

n = n−1
n

i=1

X∗

i . and Σ̂∗

n = n−1
n

i=1

(X∗

i − X̄∗

n )(X∗

i − X̄∗

n )′.

A bootstrap percentile method ellipsoidal confidence region for θ with approximate coverage probability α is

RBP = {θ̂n − n−1/2Σ̂1/2
n s : s ∈ SBP,α},

where SBP,α denotes a p-variate sphere centered at the origin such that P∗(S∗
∈ SBP,α) = α and S∗

=
√
nΣ̂−1/2

n (θ̂∗
n − θ̂n).

P∗ denotes the probability measure conditional on X1, . . . , Xn.
An alternative method is the bootstrap percentile-t ellipsoidal confidence region for θ with approximate coverage proba-

bility α, given by

RBT = {θ̂n − n−1/2Σ̂1/2
n s : s ∈ SBT ,α},

where SBT ,α denotes a p-variate sphere centered at the origin such that P∗(U∗
∈ SBT ,α) = α and U∗

=
√
nΣ̂∗−1/2

n (θ̂∗
n − θ̂n).

RBT can be unstable if there is a significant conditional probability under F̂n that Σ̂∗
n is nearly singular. We begin with the

asymptotic expansion for the coverage probability of RBP . The following assumptions are made throughout this section:

1. The distribution G of Y =


vec(X)

vech(XX ′)


satisfies the multivariate version of the Cramér continuity condition. The condition

holds provided G has a non-degenerate absolutely continuous component. See Hall [11, pp. 66–67].
2. Assume all moments of order 6 of Y are finite. That is E(∥Y∥

6) < ∞.
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