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a b s t r a c t

Given the values of a measurable function m : Rd
→ R at n arbitrarily chosen points in

Rd the problem of estimating m on whole Rd is considered. Here the estimate has to be
defined such that the L1 error of the estimate (with integration with respect to a fixed but
unknown probabilitymeasure) is small. Under the assumption thatm is (p, C)-smooth (i.e.,
roughly speaking, m is p-times continuously differentiable) it is shown that the optimal
minimax rate of convergence of the L1 error is n−p/d, where the upper bound is valid
even if the support of the design measure is unbounded but the design measure satisfies
some moment condition. Furthermore it is shown that this rate of convergence cannot be
improved even if the function is not allowed to change with the size of the data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this article the problem of estimating a measurable function m : Rd
→ R from n observations of the value of the

functionm at points z1, . . . , zn ∈ Rd, which might be arbitrarily chosen, is considered. Any estimate ofm uses in a first step
a strategy to choose the points

z1, z2 = z2((z1,m(z1))), . . . , zn = zn((z1,m(z1)), . . . , (zn−1,m(zn−1))) (1)

and then uses the data

Dn = {(z1,m(z1)), . . . , (zn,m(zn))} (2)

to estimatem bymn(·) = mn(·, Dn) : Rd
→ R. In numerical analysis this problem is known under the name scattered data

approximation (usually with non-adaptively chosen points z1, . . . , zn ∈ Rd), see, e.g., [27] and the literature cited therein.
In this paper it is studied from a statistical point of view.

Motivated by a problem in density estimation, wheremn is used to generate additional data for the density estimate and
where the error of the method crucially depends on the L1 error of mn (cf., [5,9]), the error of mn is measured in this paper
by the L1 error computed with respect to a fixed but unknown probability measure µ, i.e., by

|mn(x) − m(x)| µ(dx). (3)

In order to derive nontrivial rate of convergence results it is assumed in the sequel that the regression function is (p, C)-
smooth according to the following definition.
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Definition 1. Let p = k+ β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. A functionm : Rd
→ R is called (p, C)-smooth,

if for every α = (α1, . . . , αd) ∈ Nd
0 with

d
j=1 αj = k the partial derivative ∂km

∂x
α1
1 ...∂x

αd
d

exists and satisfies ∂km
∂xα1

1 . . . ∂xαd
d

(x) −
∂km

∂xα1
1 . . . ∂xαd

d
(z)
 ≤ C · ∥x − z∥β

for all x, z ∈ Rd, where N0 is the set of non-negative integers.

In the sequel minimax rate of convergence results for the L1 error (3) are derived. More precisely, for function classes F (p,C)

of (p, C)-smooth functions f : Rd
→ R the behavior of

inf
m̃n

sup
m∈F (p,C)


|m̃n(x) − m(x)| µ(dx)

is analyzed, and estimatesmn are constructed such that
|mn(x) − m(x)| µ(dx) ≈ inf

m̃n
sup

m∈F (p,C)


|m̃n(x) − m(x)| µ(dx).

A related problem is nonparametric regression estimation, where the x-values of the data Dn defined by (1) and (2) are
given by an independent and identically distributed sample of µ and the corresponding function values are observed with
additional errors with mean zero. This problem has been extensively studied in the literature. The most popular estimates
include kernel regression estimate (cf., e.g., [18,19,26,8,20,22,7] or [16]), partitioning regression estimate (cf., e.g., [10,2] or
[15]), nearest neighbor regression estimate (cf., e.g., [4] or [6]), least squares estimates (cf., e.g., [17] or [12]) and smoothing
spline estimates (cf., e.g., [25] or [13]). Minimax rates of convergence in this context have been derived in [21–24,1,15,16].

Kohler and Krzyżak [14] have analyzed how the minimax rate of convergence results in [22] change in case that the
function m can be observed without error. The main results are that firstly for estimating (p, C)-smooth functions no
estimate can achieve a rate better than n−p/d. Secondly, a nearest neighbor estimate achieves this rate if p ≤ 1. Thirdly,
a nearest neighbor polynomial interpolation estimate achieves this rate for arbitrary p ∈ N in case d = 1 provided the
distribution µ satisfies regularity assumptions (which are satisfied, e.g., in case of the uniform distribution). And fourthly it
is shown thatwithout regularity assumption onµno estimate can achieve a rate of convergence better than n−1. Throughout
this paper it is assumed that the support of µ is bounded.

In this article it is investigated how these rate of convergence results change in case that the estimate is allowed to
choose the design points, i.e., the points where the function values ofm are observed, in an adaptive way as described by (1).
Surprisingly, the minimax rate of convergence for estimation of (p, C)-smooth functions still remains n−p/d, but this time
it is achievable even in case p/d > 1 without regularity conditions on the measure µ. In order to prove the corresponding
lower bounds techniques from the standardminimax theory are applied. There it is allowed that the function to be estimated
changes whenever the data size changes. It is shown furthermore that the above rate of convergence cannot be improved
even if the function is not allowed to change with the size of the data, and that this rate of convergence can be achieved
even if the support of the measure µ is unbounded but µ satisfies some moment condition.

Throughout the paper the following notation is used: The sets of natural numbers, integers and real numbers are denoted
by N, Z and R, resp. For z ∈ R the smallest integer greater than or equal to z is denoted by ⌈z⌉, and ⌊z⌋ is the largest integer
less than or equal to z. For f : Rd

→ R
∥f ∥∞ = sup

x∈Rd
|f (x)|

is its supremum norm, and the supremum norm of f on a set A ⊆ Rd is denoted by
∥f ∥∞,A = sup

x∈A
|f (x)|

∥x∥ is the Euclidean norm of a vector x ∈ Rd. The components of x ∈ Rd are denoted by x(1), . . . , x(d), i.e.,
x = (x(1), . . . , x(d))T .

The support of a probability measure µ defined on the Borel sets in Rd is denoted by
supp(µ) =


x ∈ Rd

: µ(Sr(x)) > 0 for all r > 0

,

where Sr(x) is the ball of radius r around x.
The outline of the paper is as follows: Themain results are formulated in Section 2. The proofs are contained in Section 3.

2. Main results

In our first result we assume that the support of µ is bounded. In order to simplify the notation we assume w.l.o.g. that
supp(µ) = [0, 1]d. We will use well-known results from spline theory to show that if we choose in this case the design
points z1, . . . , zn equidistantly in [0, 1]d, then a properly defined spline approximation of a (p, C)-smooth function achieves
the rate of convergence n−p/d.
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