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a b s t r a c t

In this work we construct an optimal linear shrinkage estimator for the covariance matrix
in high dimensions. The recent results from the random matrix theory allow us to find
the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate
them consistently. The developed distribution-free estimators obey almost surely the
smallest Frobenius loss over all linear shrinkage estimators for the covariance matrix. The
case we consider includes the number of variables p → ∞ and the sample size n → ∞ so
that p/n → c ∈ (0,+∞). Additionally, we prove that the Frobenius norm of the sample
covariancematrix tends almost surely to a deterministic quantitywhich canbe consistently
estimated.

Published by Elsevier Inc.

1. Introduction

Nowadays, the estimation of the covariance matrix is one of the most important problems not only in statistics but
also in finance, wireless communications, biology, etc. The traditional estimator of the covariance matrix, i.e. its sample
counterpart, seems to be a gooddecision onlywhen thedimension p ismuch smaller than the sample sizen. This case is called
the ‘‘standard asymptotics’’ (see, e.g., [21]). Here, the sample covariance matrix is proven to be an unbiased and a consistent
estimator for the covariancematrix.More problems arisewhen p is comparable to n, i.e. both the dimension p and the sample
size n tend to infinity while their ratio p/n tends to a positive constant c. It is called the ‘‘large dimensional asymptotics’’
or ‘‘Kolmogorov asymptotics’’ (see, e.g., [6,8]). This type of asymptotics have been exhaustively studied by Girko [15,16],
where it was called the ‘‘general statistical analysis’’. There is a great amount of research done on the asymptotic behavior
of functionals of the sample covariance matrix under the large dimensional asymptotics (see, e.g., [17–19,5]).

There are some significant improvements in the case when the covariance matrix has a special structure, e.g. sparse, low
rank, etc. (see, [7,24,9,10], etc.). The case when the underlying random process obeys the factor structure is studied by Fan
et al. [11]. In these cases the covariance matrix can be consistently estimated even in high-dimensional case. In the case
when no additional information on the structure of the covariance matrix is available, the problem has not been studied
in detail up to now. The exception is the paper of Ledoit and Wolf [22], where a linear shrinkage estimator was suggested
which possesses the smallest Frobenius loss in quadratic mean.
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Marc̆enko and Pastur [23], Yin [31], Silverstein [26], Bai et al. [2], Bai and Silverstein [5] used the large dimensional
asymptotics to study the asymptotic behavior of the eigenvalues of general random matrices. They discovered that appro-
priately transformed random matrix at infinity has a nonrandom behavior and showed how to find the limiting density of
its eigenvalues. In particular, Silverstein [26] proved under very general conditions that the Stieltjes transform of the sam-
ple covariance matrix tends almost surely to a nonrandom function which satisfies some equation. This equation was first
derived by Marc̆enko and Pastur [23], who showed how the real covariance matrix and its sample estimate are connected
at infinity. In our work we use this result for estimating functionals of the covariance matrix consistently.

In this work we concentrate on certain type of estimators, namely the shrinkage estimators. The shrinkage estimators
were introduced by Stein [30]. They are constructed as a linear combination of the sample estimator and some known
target. These estimators have remarkable property: they are biased but can significantly reduce the mean square error of
the estimator. In the large as well as in the small dimensional cases it is difficult to find the consistent estimators for the
so-called shrinkage intensities. In this situation Ledoit and Wolf [22] made progress when the target matrix is the identity
and found a feasible linear shrinkage estimator for the covariancematrix which is optimal in the sense of the squaredmean.
This estimator provided a remarkable dominance over the sample estimator and other known estimators for the covariance
matrix. The linear shrinkage presented by Ledoit andWolf [22] shows its best performance in case when the eigenvalues of
the covariance matrix are not dispersed and/or the concentration ratio c is large.

In this paper we extend the work of Ledoit and Wolf [22] by constructing a more general linear shrinkage estimator for
a large dimensional covariance matrix. The target matrix here is considered to be an arbitrary symmetric positive definite
matrix with uniformly bounded trace norm. Using random matrix theory we prove that the optimal shrinkage intensities
are nonrandom at infinity, find their asymptotic deterministic equivalents and estimate them consistently. Additionally
we show that the Frobenius norm of the covariance matrix tends to a deterministic quantity which can also be estimated
consistently. The resulting estimator obeys almost surely the smallest Frobenius loss when the dimension p and the sample
size n increase together and p/n → c ∈ (0,∞) as n → ∞.

The rest of paper is organized as follows. In Section 2 we present the preliminary results from the random matrix
theory which are used in the proofs of the theorems. Section 3 contains the oracle linear shrinkage estimator and the main
asymptotic results on the shrinkage intensities and the Frobenius norm of the sample covariance matrix. In Section 4 we
present the bona fide linear shrinkage estimator for the covariancematrix andmake a short comparisonwith thewell-known
Ledoit andWolf [22] estimator. The results of the empirical study are provided in Section 5, while Section 6 summarizes all
main results of the paper. The proofs of the theorems are moved to the Appendix.

2. Preliminary results and large dimensional asymptotics

By ‘‘large dimensional asymptotics’’ or ‘‘Kolmogorov asymptotics’’ it is understood that p
n → c ∈ (0,+∞) where the

number of variables p ≡ p(n) and the sample size n both tend to infinity. In this case the traditional sample estimators
perform poorly or very poorly and tend to over/underestimate the population covariance matrix.

We use the following notations in the paper:

• 6n stands for the covariance matrix, and Sn denotes the corresponding sample covariance matrix.
• The pairs (τi, νi) for i = 1, . . . , p are the collection of eigenvalues and the corresponding orthonormal eigenvectors of

the covariance matrix 6n.
• Hn(t) is the empirical distribution function (e.d.f.) of the eigenvalues of 6n, i.e.,

Hn(t) =
1
p

p
i=1

1{τi<t} (2.1)

where 1{·} is the indicator function.
• Let Xn be a p×nmatrix which consists of independent and identically distributed (i.i.d.) real random variables with zero

mean and unit variance such that

Yn = 6
1
2
n Xn. (2.2)

In the derivation of the main results the following five assumptions are used.

(A1) The population covariance matrix 6n is a nonrandom p-dimensional positive definite matrix.
(A2) Only the matrix Yn is observable. We know neither Xn nor 6n itself.
(A3) We assume that Hn(t) converges to some limit H(t) at all points of continuity of H .
(A4) The elements of the matrix Xn have uniformly bounded moments of order 4 + ε, ε > 0.
(A5) The largest eigenvalue of the covariance matrix 6n is at most of the order O(

√
p). Moreover, we assume that the order

of only finite number of eigenvalues could depend on p.

The assumptions (A1)–(A3) are important to proveMarc̆enko–Pastur equation (see, e.g., [26]) and they are standard in the
large dimensional asymptotics (see, e.g., [5]). In particular, the assumption (A3) on the existence of the limiting population
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