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a b s t r a c t

Case-cohort designs provide a cost effective way to conduct epidemiological follow-up
studies in which event times are the outcome variables. This paper develops a quantile
regression approach to the analysis of case-cohort data. Quantile regression is a highly
useful tool to delineate relationships between the outcome variable and covariates.
Unbiased functional estimating equations are constructed, resulting in asymptotically
unbiased estimators. Efficient algorithms based on minimizing L1-type convex functions
are given. Uniform consistency and weak convergence of the resulting estimators are
established. Error estimation and confidence intervals are obtained by applying a specially
designed resampling procedure for case-cohort data. Simulation studies are conducted
to assess the performance of the proposed method. An example is also provided for
illustration.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The case-cohort design proposed by Prentice [22] provides a cost effective way of conducting large epidemiological
cohort studies when event time is the outcome variable. In a typical epidemiological cohort study, subjects are sampled
from a population and their disease trajectories are followed. Although only a small fraction of the subjects will develop
the disease of interest, the usual regression analysis requires the exposure histories are ascertained for all subjects. In the
case-cohort design, however, the covariate information is collected only for the diseased subjects (i.e., cases) and a randomly
sampled subcohort of censored observations. For rare diseases, the size of the subcohort can be much smaller than that of
the entire cohort, resulting in substantial savings.

Standard analyses of cohort studies with event time outcomes are usually conducted using the Cox regressionmodel [2].
For the case-cohort design, Prentice [22] proposed a pseudo-likelihood approach to analyze case-cohort data under the Cox
regression model. Further developments were made by Self and Prentice [23], Lin and Ying [16], Chen and Lo [5], Chen [3],
Kulich and Lin [15], etc. Kulich and Lin [14] developed the case-cohort analysis under the additive hazard model, another
important type of hazard-based regressionmodel. Chen [4] discussed the analysis of case-cohort data using the proportional
odds model. More recently, Lu and Tsiatis [17]and Chen and Zucker [6] analyzed case-cohort data under the class of linear
transformation models, which includes the Cox model and the proportional odds model as special cases.

An important alternative to the Cox model in survival analysis is the accelerated failure time (AFT) model; cf. [7]. This
model relates the mean of the logarithm of the event time linearly to the covariates. Due to its connection to the classical
linear regression and its ease of interpretation of the regression effect, it is of interest to develop parallel approaches to
handling case-cohort data. The case-cohort regression analysis under the AFT model was studied by Kong and Cai [13].
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As a significant extension of classical linear regression, quantile regression has received much attention since the
influential work of Koenker and Bassett [12]. A linear quantile regression model links the conditional quantiles of the
outcome to the covariates linearly. Specifically, let Y be the outcome variable and Z̃ the corresponding (p− 1)× 1 covariate
vector. Let Z = (1, Z̃⊤)⊤. For any τ ∈ [0, 1), the conditional quantile of Y given Z is defined as QY (τ |Z) = sup{t : P(Y 6
t|Z) 6 τ }. A linear quantile regression model assumes that for each τ ∈ (0, 1),

QY (τ |Z) = Z⊤β(τ), (1)
where β(τ), the parameter vector representing the relationship of covariates to the τ -th quantile of Y , may depend upon τ
and is right continuous. Model (1) describes the relationship of the covariates with the conditional distribution of Y rather
than the conditional mean only, as in the AFT model. The estimates of the regression parameters can be obtained efficiently
using a linear programming algorithm. Resampling techniques can be adopted to make inferences about the regression
parameters, cf., [10]. A nice review of quantile regression models can be found in [11].

When the outcome variable is an event time, estimation and inference for the regression parameters of quantile models
become complicated due to the censoring. For cohort data with complete covariate data, much effort has devoted to the
development of estimation procedures for the regression parameters. Early work includes Powell [19,20]’s modified least
absolute deviation method with always observable censoring times. After that, Ying et al. [25] proposed a semiparametric
estimation procedure under the restrictive assumption that censoring time is independent of event time and covariates.
Under the conditionally independent censoring assumption, Portnoy [21] developed a recursively reweighed estimating
procedure.More recently, Peng andHuang [18] novelly developed a series ofmartingale-type estimating functions assuming
conditionally independent censoring. The resulting estimating equations can be solved byminimizing a sequence of L1-type
convex functions. They also systematically studied the large sample properties of the proposed estimators and constructed
corresponding inference procedures.

In this paper, we develop a quantile regression approach for the analysis of case-cohort data. Unbiased estimating
functions that account for the missing covariates in case-cohort designs are constructed. The subcohort can be drawn
either by simple random sampling with fixed subcohort sizes or by independent Bernoulli sampling with arbitrary selection
probabilities. The proposed estimating equations for the regression parameters can be solved byminimizing L1-type convex
functions. We establish the large sample properties, including consistency and asymptotic normality, of the resulting
estimators. However, the corresponding limiting variances depend on unknown density functions which may not be
estimated well nonparametrically with case-cohort data. In order to obtain the complete inference procedures, we develop
a new random weighting approach for case-cohort data to estimate the standard errors.

The remainder of the paper is organized as follows. In Section 2, we introduce notation, describe the specification of
the model, and construct the estimating functions. The algorithm for solving the resulting estimating equations is then
developed and the new resampling technique is described. In Section 3, the finite sample performance of the proposed
estimating approach is assessed by a series of simulation studies. A real example is used to illustrate the proposed method
in Section 4. Section 5 concludes. All technical details are summarized in the Appendix.

2. Main results

In this section, we first introduce necessary notation and describe the quantile regression model. Then we develop
unbiased estimating functions that account for case-cohort data. The algorithm for obtaining the estimators is designed.
Finally, we develop the resampling procedures for standard error estimation and inferences.

2.1. Notation and model specification

Wewill use T to denote the event time and Z̃ the corresponding (p−1)×1 covariate vector. Let C be the censoring time,
X = T ∧ C and ∆ = I{T 6 C}, where ∧ is the minimum operator and I{·} represents the indicator function. We assume that
C is independent of T given covariates Z = (1, Z̃⊤)⊤.

For the cohort study with complete covariates observations, the data are assumed to be n independently and identically
distributed (i.i.d.) replicates of (X, ∆, Z) and are denoted by {(Xi, ∆i, Zi), i = 1, . . . , n}. Define FT (t|Z) = P(T 6 t|Z) and
ΛT (t|Z) = − log{1 − FT (t|Z)} to be the conditional distribution function and conditional cumulative hazard function of T
given Z , respectively. Let N(t) = 1I{X 6 t} and M(t) = N(t) − ΛT (t ∧ X |Z). Let Ni(t) and Mi(t), i = 1, . . . , n, be the
sample analogs of N(t) andM(t). It is not difficult to see thatMi(t) is a martingale process with an appropriate σ -filtration.

Under the case-cohort designs, covariates are available only on the cases, i.e., those subjects with ∆i = 1, and on the
subcohort. In this sectionwe assume that the subcohort is drawn from the entire cohort by simple random sampling scheme
with fixed size denoted by ñ. Let ξi be a binary variable. It takes values 1 and 0, indicating whether or not the i-th subject in
the original cohort is selected into the subcohort. Under the simple random sampling, (ξ1, . . . , ξn) is uniformly distributed
on {(d1, . . . , dn) ∈ {0, 1}n :

n
i=1 di = ñ}. Moreover, the subcohort indicators ξi’s are independent of the data.

A linear quantile regressionmodel is specified to link the event time T and the covariates Z . Since the event time is always
non-negative, we take the logarithm of the event time to be the outcome variable, i.e., Y = log T . We still use QY (τ |Z) to
denote the conditional quantile of Y given Z . Model (1) is assumed for Y and Z , i.e., QY (τ |Z) = Z⊤β(τ), or equivalently,
QT (τ |Z) = exp{Z⊤β(τ)}.
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