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a b s t r a c t

In this paper we consider the distribution of the product of a Wishart random matrix and
a Gaussian random vector. We derive a stochastic representation for the elements of the
product. Using this result, the exact joint density for an arbitrary linear combination of the
elements of the product is obtained. Furthermore, the derived stochastic representation
allows us to simulate samples of arbitrary size by generating independently distributed
chi-squared random variables and standard multivariate normal random vectors for each
element of the sample. Additionally to the Monte Carlo approach, we suggest another
approximation of the density function, which is based on the Gaussian integral and the
third order Taylor expansion. We investigate, with a numerical study, the properties of the
suggested approximations. A good performance is documented for both methods.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The basic building block of classical multivariate analysis is the multivariate normal distribution. Its properties are very
well understood. Unlike the normal distribution, the theory of theWishart distribution is less established, but nevertheless,
contains numerous important and useful results. Many important distributional properties of Wishart matrices, inverse
Wishart matrices, and related statistics are discussed in detail by [9,1,6], and others. The characterization of the Wishart
distribution is presented in [16], who extended the results of [7,8], while [13–15] considered the generalization of the
Wishart distribution constructed as a quadratic form of a T -distributed random matrix (cf. [5]) whose density function
is based on the beta function of the matrix argument (see, e.g., [12]).

The joint distribution functions of themultivariate normal and theWishart distributions have not been extensively stud-
ied in the statistical literature. There are mainly results on the distribution of quadratic forms (see e.g. [17]), despite the fact
that the product of the (inverse) Wishart distribution and the normal distribution appears in many applications. A classical
example can be found in discriminant analysis, where the elements of the discriminant function are computed as products of
the inverse sample covariancematrixmultiplied by the samplemean vector. Another important example is taken fromport-
folio theory in finance, where the weights of the tangency portfolio are estimated by the same product using historical asset
returns (see e.g., [4,2]). If frequentistmethods are used in analyzing the distributional properties of the discriminant function
and/or of the estimated portfolio weights, then we have to deal with the product of the inverse Wishart matrix and a nor-
mal vector. This issue was investigated recently by [2]. However, in the Bayesian framework, we obtain the inverseWishart
distribution as the posterior distribution of the sample covariance matrix. This leads to the product of the Wishart matrix
and a normal vector. Obtaining the distributional properties of this product statistic is the main goal of the present paper.
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In this paper we investigate the Wishart distribution in combination with a Gaussian vector. In particular, we consider
the expressions which depend on Az, where A is a Wishart matrix and z is a Gaussian vector, which are independently
distributed. First, we derive a stochastic representation and the exact density function of LAz for an arbitrary deterministic
matrix L. Second, we consider two important special cases. In the first example it is assumed that the covariance matrix 6

is equal to the identity matrix and L is a vector in the second case. In both cases the stochastic representations and the exact
densities are derived. Moreover, we suggest a further approximation of the density of LAz which is based on the Gaussian
integral and the third order Taylor series expansion. The performance of the approximate densities is analyzed with an
extensive Monte Carlo study.

The rest of the paper is structured as follows. The main results are presented in Section 2, where the stochastic
representation for the product LAz is derived as Theorem 1. It is applied to derive the density function in Corollary 1. Several
important special cases are considered in Corollaries 2 and 3. In Section 2.1 we find an approximation for the density of
LAz that is based on the third order Taylor series approximation (Theorem 2). The results of numerical studies are given in
Section 3, while Section 4 summarizes the paper. The Appendix contains the Proof of Theorem 2.

2. Main results

Let A be a k-dimensional Wishart matrix with n degrees of freedom and covariance matrix 6, that is, A ∼ Wk(n,6).
We assume that n > k, implying that the matrix A is non-singular. Furthermore, let z ∼ Nk(µ, λ6), i.e., it follows a
k-dimensional multivariate normal distribution. Throughout the paper it is assumed that λ > 0 and that 6 is positive
definite. Let d

= denote equality in distribution and Ip stand for the identity matrix of order p. In Theorem 1 we present a
stochastic representation for p linear combinations of the elements of the random vector Az, that is, LAz, where L is a p × k
constant matrix of rank p < k. The distribution of the product is given in terms of a χ2 random variable and of two standard
multivariate normal random vectors which are independently distributed. Stochastic representation is a very powerful tool
inmultivariate statistics. It plays an important role in the theory of elliptically contoured distributions (cf. [10]) and iswidely
used in Monte Carlo simulations. In particular, the simulation of the values of the product is considerably simplified if we
use the stochastic representation and not the original definition based on the multivariate normal samples.

Theorem 1. Let A ∼ Wk(n,6), z ∼ Nk(µ, λ6)with λ > 0 and 6 is positive definite. Assume that A and z are independent. Let
L be a p×k constant matrix of rank p < k and let S1 = (L6LT )−1/2L61/2, S2 = (Ip−ST1S1)

1/2. Then the stochastic representation
of LAz is given by

LAz d
= ξ(L6LT )1/2y1 +


ξ(L6LT )1/2

yT1y1 + ηIp −


yT1y1 + η −

√
η

yT1y1
y1yT1

 z0, (1)

where ξ ∼ χ2
n , z0 ∼ Np(0, Ip),

y =


y1
y2


∼ Nk


S161/2µ

S261/2µ


, λ


S162ST1 S162ST2
S262ST1 S262ST2


with η = yT2y2;

ξ and z0 are independent of y.

Proof. Since A and z are independently distributed, it follows that the conditional distribution of LAz|(z = z∗) is equal to
the distribution of LAz∗. Let L̃ = (LT , z∗)T . Then Ã = L̃AL̃T = {Ãij}i,j=1,2 can be partitioned with Ã11 = LALT , Ã12 = LAz∗,

Ã21 = z∗TALT and Ã22 = z∗TAz∗. Similarly, H = L̃6L̃
T

= {Hij}i,j=1,2 with H11 = L6LT , H12 = L6z∗, H21 = z∗T6LT and
H22 = z∗T6z∗.

Because A ∼ Wk(n,6) and rank(L̃) = p + 1 ≤ k, we get from Theorem 3.2.5 of [18] that Ã ∼ Wp+1(n,H). Furthermore,
the application of Theorem 3.2.10 of [18] leads to

Ã12|Ã22, z = z∗
∼ Np(H12H−1

22 Ã22,H11·2Ã22), (2)

where H11·2 = H11 − H12H−1
22 H21.

Let ξ = Ã22/H22. Then

LAz
zTAzz6z

= ξ, z


∼ Np(ξL6z, ξ(zT6zL6LT − L6zzT6LT )). (3)

Because ξ and z are independent (cf., [18, Theorem 3.2.8]) the stochastic representation of LAz is

LAz d
= ξL6z +


ξ(zT6zL6LT − L6zzT6LT )1/2z0,

where ξ ∼ χ2
n , z0 ∼ Np(0, Ip), z ∼ Nk(µ, λ6); ξ, z0, and z are mutually independent.
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