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a b s t r a c t

Bootstrap is the standard method in the spatial scan test. However, because the spatial
scan statistic lacks theoretical properties, its development and connection to mainstream
statistics has been limited. Using the methods of empirical processes with a few weak
regularity conditions, the limiting distribution of the spatial scan statistic, which can
provide a theoretical basis for the spatial scan test, is derived. It is shown that the limiting
distribution of the spatial scan statistic only depends on the ratio of at risk populations
and the collection of cluster candidates, which provides a base to theoretically assess the
critical value of the spatial scan test in a real world daily or weekly disease surveillance.
A simulation study based on the Kolmogorov–Smirnov test shows that the limiting
distribution is consistent with the true distribution. Type I error probabilities and power
functions from the limiting distribution and the bootstrap method are almost identical.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Spatial cluster detection is an important topic in statistics [2,4,6,10]. While there are over a hundred spatial cluster and
clustering tests [13], spatial scan and spatial association tests are the most commonly used cluster detection methods. This
paper focuses on the spatial scan test because of its wide range of applications in disease surveillance in local government
agencies [14,23,24], and its various extensions that are intended to improve computational speed [12], capture irregular
cluster shapes [1,17], and account for ecological covariates [28]. However, these new extensions can hardly be compared
or integrated, as all of them have been evaluated via the Monte Carlo simulation. Understanding the theoretical properties
of the spatial scan test enables us to not only unify different methods of the spatial scan test, but also create a platform for
further methodological developments. The resulting distribution will likely improve the efficiency and precision of a spatial
scan test at a prescribed condition.

Scan statistics were originally developed for time series data [22]. Suppose the number of events on a given time interval
(e.g. [0, 1]) follows a homogeneous Poisson process in the absence of a cluster. A subinterval of a fixed length moves along
the time domain so that the number of events contained by the subinterval is maximized. Let N(t) be the number of events
observed on [0, t]. Then, the scan statistic with the length of 0 < u < 1 is defined as

sup
0<t<1−u

[N(t + u) − N(t)].

A cluster is detected if the value of the scan statistic is large. Due tomultiple testing, the scan statistic is often larger than that
expected from intuitionwhenno cluster is present. For this reason, theMonte Carlomethod is often used. In order to improve
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efficiency, such as carrying out the test at a prescribed level, there have been several attempts to derive a precise distribution
of the scan statistic for time series data. Examples include the derivation of the exact expression [22], the asymptotic
distribution of N(t) under the null hypothesis of uniformity [5], and the approximation [8] of the null distribution.

Although the scan statistic was extended from one- to two-dimensional point data, there has been little work to derive
the null distributionwith the exception of [3]. Moreover, sincemost georeferenced disease data are not available at the point
level, the most commonly used spatial scan statistic is, therefore, developed at an aggregated level [16]. Suppose a study
area has been partitioned intom spatial units and each has an at-risk population and a number of case counts. Suppose C is
the only cluster in the study area. Let Yi be the count, yi be the observed count, and ni be the at-risk population in unit i, for
i = 1, . . . ,m. Assume Yi satisfies

Yi ∼ Poisson(θini), i = 1, . . . ,m, (1)

where θi are unknown disease rates. Then, the null hypothesis is specified as

H0 : θi = θ0,

and the alternative hypothesis is specified as

H1 : E(Yi) = θ0Cni(1 + δi),

with δi ≠ 0 if i ∈ C and δi = 0 if i ∈ C̄ [9,16]. Here, θ0C is the average disease rate for units outside of the cluster. If θi > θ0C ,
then unit i is within a hot spot; if θi < θ0C , then unit i is within a cool spot. If H0 holds, then θ0C = θ0 is the average disease
rate for all units, the same one for each unit.

Let C be the collection of cluster candidates. For a selected C ∈ C, let Y =
m

i=1 Yi, y =
m

i=1 yi, n =
m

i=1 ni, YC =
i∈C Yi, yC =


i∈C yi, nC =


i∈C ni, YC̄ =


i∈C̄ Yi, yC̄ =


i∈C̄ yi, and nC̄ =


i∈C̄ ni. Then, y, yC and yC̄ are the observed

values of Y , YC and YC̄ , respectively. Assume θi = θC if i ∈ C and θi = θ0 if i ∈ C̄ . Under H0 : θC = θ0,

Yi ∼ Poisson(θ0ni), i = 1, . . . ,m. (2)

Under the alternative hypothesis of hot spot only,

Yi ∼ Poisson(θ0ni), i ∈ C̄; or Yi ∼ Poisson(θCni), i ∈ C, θC > θ0. (3)

Then, the likelihood function is

LC (θ0, θC ) =


m
i=1

nYi
i

Yi!


i∈C

θ
Yi
C e−θC ni


i∈C̄

θ
Yi
0 e−θ0ni


. (4)

The likelihood ratio statistic is

ΛC =

max
θC>θ0

LC (θ0, θC )

max
θC=θ0

LC (θ0, θC )
=


YC/nC

Y/n

YC YC̄/nC̄

Y/n

YC̄
, (5)

when YC/nC ≥ YC̄/nC̄ and ΛC = 1 otherwise. Since C ∈ C is unknown, the spatial scan statistic is defined by

Λ = max
C∈C

ΛC . (6)

In contrast to the scan statistic for time series data, the spatial scan statistic requires the consideration of additional issues.
First, a cluster for time series data is a connected subsetwhichmust be a subinterval. A spatial clustermay havemany shapes,
such as circular, elliptical, and irregular polygon, and they cannot be simultaneously considered in the definition. Second,
the derivation of the scan statistic for time series data relies only on the length and the center of subintervals, but these
two conditions are not sufficient in the derivation of a spatial scan statistic. Third, existing methods for the derivation of
theoretical properties of the scan statistic for time series data rely on the construction of a stochastic process [19], which is
not directly applicable to the spatial scan statistic. For this reason, the bootstrap method has long been used to compute the
p-value of the test statistic.

Since the number of units is finite, the number of possible spatial candidates C is also finite being smaller that, both
of the same magnitude order as, the number 2m

− 1 of possible non-empty subsets out of m spatial units. This makes the
computation ofΛ difficult, especiallywhen a bootstrapmethod is used. In this paper, we develop an approach to the limiting
distribution of the spatial scan statistic, which can avoid the use of the bootstrap method in the derivation of the p-value
and reduce the computational burden of the spatial scan test.

We used themethod of empirical processes to derive the limiting distribution of the spatial scan statistic. It assumes that
expected counts are not close to zero in most spatial units and the conditional distribution of the likelihood ratio statistic is
approximately χ2 distributed. By sweeping the likelihood ratio statistic over cluster candidates, the asymptotic distribution
of the test statistic is derived. The proof uses the empirical processes method [27, p. 260]. We show that the spatial scan
statistic converges in distribution to the square of the supremumof the absolute value (or positive part) of aGaussian random
field under some regularity conditions. This value can be used to compute the p-value of the test statistic.
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