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a b s t r a c t

The empirical Bayes (EB) estimator or empirical best linear unbiased predictor (EBLUP)
in the linear mixed model (LMM) is useful for the small area estimation in the sense
of increasing the precision of estimation of small area means. However, one potential
difficulty of EB is that when aggregated, the overall estimate for a larger geographical area
maybequite different from the correspondingdirect estimate like the overall samplemean.
Oneway to solve this problem is the benchmarking approach, and the constrained EB (CEB)
is a feasible solution which satisfies the constraints that the aggregatedmean and variance
are identical to the requested values of mean and variance. An interesting query is whether
CEB may have a larger estimation error than EB. In this paper, we address this issue by
deriving asymptotic approximations of MSE of CEB. Also, we provide asymptotic unbiased
estimators for MSE of CEB based on the parametric bootstrap method, and establish their
second-order justification. Finally, the performance of the suggested MSE estimators is
numerically investigated.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The linear mixed models (LMMs) and the model-based estimates including empirical Bayes estimator (EB) or empirical
best linear unbiased predictor (EBLUP) have been recognized useful in small area estimation. The typical models used for the
small area estimation are the Fay–Herriot model and the nested error regression model (NERM), and the usefulness of EB is
illustrated by Fay and Herriot [7] and Battese, Harter and Fuller [1]. For a good review and account on this topic, see [9,14].

One potential difficulty of EB is that when aggregated, the overall estimate for a larger geographical area may be
quite different from the corresponding direct estimate like the overall sample mean. One way to solve this problem is
the benchmarking approach, which modifies EB so that one gets the same aggregate mean and/or variance for the larger
geographical area. Ghosh [8] suggested the constrained Bayes estimator or the constrained EB (CEB) which satisfy the
constraints that the aggregated mean and variance are identical to the mean and variance of the posterior distribution, and
Datta, Ghosh, Steorts and Maples [4] gave some extensions. Since the sample variance of EB is smaller than the posterior
variance, CEB modifies EB so that its sample variance is identical to the posterior variance. However, the usefulness and
purpose of EB is that EB gives stable estimates with higher precision of estimation. We then have a concern whether the
constrained EB may be against this purpose. Thus, it is quite interesting and important to assess the mean squared error
(MSE) of CEB. In this paper, we address this issue for CEB in the general normal linear mixed model.
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In Section 2, we consider the general constraint on the mean and variance of estimators and derive the general
constrained estimators including CEB, which is an extension of Ghosh [8] and Datta et al. [4]. In Section 3, we derive the
asymptotic approximations of MSE of CEB. When the variance constraint is the posterior variance, it is shown that MSE
of CEB is larger than MSE of EB in the first order approximation. To modify this property, we suggest some modification
of the variance constraint. We also provide an asymptotically unbiased estimator of MSE of CEB based on the parametric
bootstrap method, and establish the second-order justification. In Section 4, we investigate the performance of MSE of CEB
and the MSE estimators. Section 5 gives a concluding remark. The proofs of the asymptotic approximations are given in the
Appendix.

2. Constrained Bayes estimators

2.1. Linear mixed model and mean–variance constraints

Consider the general linear mixed model

y = Xβ + Zv + ϵ, (2.1)

where y is an N × 1 observation vector of the response variable, X and Z are N × p and N ×M matrices, respectively, of the
explanatory variables, β is a p× 1 unknown vector of the regression coefficients, v is anM × 1 vector of the random effects,
and ϵ is an N × 1 vector of the random errors. Here, v and ϵ are mutually independently distributed as v ∼ NM(0,Q ) and
ϵ ∼ NN(0,R)whereQ andR are positive definitematrices. Then, y has amarginal distributionNN(Xβ,6) for6 = R+ZQZ ′.
It is assumed that Q and R are functions of unknown parameters ψ = (ψ1, . . . , ψq)

′, namely, Q = Q (ψ),R = R(ψ) and
6 = 6(ψ). Denote unknown parameters by ω = (ψ,β).

Let θ = Xβ + Zv and letθ =θ(y) be a predictor of θ. Suppose thatθ is evaluated relative to the quadratic loss function
∥θ − θ∥2

� = (θ − θ)′�(θ − θ) for known positive definite matrix �. In the Bayesian framework, θ has a prior distribution
NN(Xβ, ZQZ ′), and the posterior distribution of θ given y is

θ|y ∼ NN

Xβ + ZQZ ′6−1(y − Xβ), Z(Q−1

+ Z ′R−1Z)−1Z ′

. (2.2)

Since the Bayes estimator is the posterior mean E[θ|y] under the squared error loss, the Bayes estimator is

θB =θB(ω) = Xβ + ZQZ ′6−1(y − Xβ). (2.3)

The covariance matrix of θ|y given in (2.2) is rewritten as Z(Q−1
+ Z ′R−1Z)−1Z ′

= ZQZ ′
− ZQZ ′6−1ZQZ ′, which is further

expressed as (R−1
+ (ZQZ ′)−1)−1 when Z is of full rank.

In this paper, we treat general constraints on a linear combination and residual variance of estimatorθ. LetW be anN×L
known matrix. The constraints are described by

(C)

(C1) (W ′�W )−1W ′�θ = t1(y) for L-variate function t1(y),
(C2) ∥θ − W (W ′�W )−1W ′�θ∥2

� = t2(y) for function t2(y).
(2.4)

The estimator (W ′�W )−1W ′�θ is the weighted least squares estimator of ξ under the loss ∥θ − W ξ∥2
�, and ∥θ −

W (W ′�W )−1W ′�θ∥2
� is the residual variance. Since ∥θ − W (W ′�W )−1W ′�θ∥2

� =θ′

P�θ for
P� = �− �W (W ′�W )−1W ′�,

the constraint (C2) is expressed asθ′

P�θ = t2(y). Thus,we call (C1) and (C2) themean and variance constraints, respectively,
in this paper. We give examples of the constraints (C1) and (C2) below.

The constraint (C1) was dealt by Datta et al. [4] who derived a constrained Bayes estimator θCB satisfying
(W ′�W )−1W ′�θCB = t1(y). A typical example of t1(y) is

t1(y) = (W ′�W )−1W ′�y. (2.5)

As explained in examples given below, this corresponds to the constraint that the sampling mean of estimators is equal to
the overall sample mean based on y in specific situations. For the Bayes estimatorθB given in (2.3), it is seen that

(W ′�W )−1W ′�θB = (W ′�W )−1W ′�y − (W ′�W )−1W ′�R6−1(y − Xβ),

which is not equal to (W ′�W )−1W ′�y. Thus, the Bayes estimator does not satisfy the mean constraint (C1). Another
example is

t1(y) = (W ′�W )−1W ′�θB, (2.6)
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