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a b s t r a c t

This work proposes a class of hierarchical models for geostatistical count data that includes
the model proposed by Diggle et al. (1998) [13] as a particular case. For this class of models
the main second-order properties of the count variables are derived, and three models
within this class are studied in some detail. It is shown that for this class ofmodels there is a
close connection between the correlation structure of the counts and their overdispersions,
and this property can be used to explore the flexibility of the correlation structures of these
models. It is suggested that the models in this class may not be adequate to represent data
consisting mostly of small counts with substantial spatial correlation. Three geostatistical
count datasets are used to illustrate these issues and suggest how the resultsmight be used
to guide the selection of a model within this class.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Spatial count data are routinely collected in many earth and social sciences, such as ecology, epidemiology, demography
and geography. For instance, death counts due to different causes are collected on a regular basis by government agencies
throughout the entire US and classified according to different demographic variables, such as age, gender and race. Among
the most common goals for the analysis of this kind of data are determining the effects on mortality of spatially varying risk
factors (regression problems) and estimation of unobserved spatially varying quantities of interest (prediction problems).
In this work I consider models for geostatistical count data.

Unlike for continuous data, few models have been proposed in the literature for geostatistical count data. This is due, in
part, to the scarcity of families of multivariate discrete distributions, and the fact that none of the available ones have the
flexibility and mathematical tractability comparable to that of some of the families of multivariate continuous distributions
(such as the Gaussian family of distributions). This scarcity is reflected by the fact that even the most influential spatial
statistics textbooks either lack a treatment of models for geostatistical count data or have a very scant one, with the book
by Diggle and Ribeiro [12] as a notable exception. Early works that analyze geostatistical count data include Gotway and
Stroup [16] and McShane et al. [25], who proposed using generalized linear models and generalized estimating equations.
But the statistical basis and validity of these approaches tomodel geostatistical data are somewhat questionable. In addition,
prediction methodology in these works is either lacking or ad-hoc, with no measures of prediction uncertainty.

Mostmodels of current use for geostatistical count data useGaussian random fields as building blocks. The prime example
is the hierarchical model proposed by Diggle et al. [13], which can be viewed as a generalized linear mixed model. This is
also known as the Poisson–Lognormal model, which was initially proposed for the analysis of correlated count data by
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Aitchison and Ho [1], and used for applications in non-spatial contexts by Chan and Ledolter [4], Chib and Winkelmann [6]
and Hay and Pettitt [20]. Applications of this model for the analysis of geostatistical count data appeared in Diggle et al. [13],
Christensen and Waagepetersen [8], Zhang [33], Royle and Wikle [29], Christensen et al. [7], Guillot et al. [19] and Eidsvik
et al. [14]. Extensions to model geostatistical zero inflated count data and multivariate count data were given, respectively,
by Recta et al. [28] and Chagneau et al. [3]. Fitting this kind of hierarchical geostatisticalmodels is a challenging task requiring
numerical methods, such as EM or MCMC algorithms, and research efforts to date have almost entirely focused on fitting
and computation.

As is apparent from the above, the aforementioned Poisson–Lognormal model has generated a fair amount of attention
and research, and currently seems to be (arguably) the ‘state-of-the-art’ formodeling geostatistical count data. Nevertheless,
some of the basic properties of this model are not well understood yet, and in fact the study of its main second-order
properties and its adequacy to describe a variety of geostatistical count datasets have been somewhat neglected, with the
work by Madsen and Dalthorp [24] as a notable exception. One salient property of this model is that the mean function
of the counts may exert a substantial influence on their correlation function. This makes the model to have two features
that may be undesirable for the modeling of some datasets. First, the regression parameters might be difficult to interpret
and estimate because of their influence on two different aspects of the model. Second, the regression parameters induce
a ‘whitening effect’ on the correlation structure of the counts, which in some cases renders the model unable to represent
substantial spatial correlation present in some datasets. This effect is specially severe when the data consist mostly of small
counts, which is precisely the case when a model accurately describing the discreteness of the data is most needed (as
opposed to a model with continuous distributions intended to approximate discrete data).

In this work I propose a class of hierarchical models for geostatistical count data that includes the Poisson–Lognormal
model as a particular case. The main second-order properties of the models within this class are derived, both for the latent
random field in the second level of the hierarchy and for the observable counts. It is shown that for this class of models
the correlation structure of the counts strongly depends on their overdispersions, which in turn are determined by the
mean–variance relationship of the marginal distributions of the latent random field. An explicit expression is obtained for
the correlation function of the counts in terms of their overdispersions and the correlation function of the latent random
field. When there is no explicit expression for the correlation function of the latent random field, a series expansion is
used to numerically investigate the second-order properties of these models. These properties should help researchers and
practitioners judge the possible adequacy of any of thesemodels to describe a particular dataset, and point to the importance
of estimating overdispersion in geostatistical count data.

The above general results are used to study in some detail the second-order properties of the Poisson–Lognormal model
and two Poisson–Gamma models. It is shown that one of the Poisson–Gamma models has similar second-order properties
as the Poisson–Lognormal model, but the properties of the other Poisson–Gamma model are different. The findings shed
light into the scope and limitations of this class of hierarchical models, and suggest that this class of models may not be
adequate to describe datasets that consist mostly of small counts and display substantial spatial correlation. It is argued
that these second-order properties may be used to guide the selection of a model within the proposed class and informally
assess its adequacy to describe spatial count data. Some of the issues raised here are illustrated using three geostatistical
count datasets that were previously analyzed in the literature.

2. A class of models for geostatistical count data

I describe here a class of models for the variation of spatial count data that generalizes the model proposed by Diggle
et al. [13], and study their main second-order properties. Let {Λ(s) : s ∈ D}, with D ⊂ Rd and d ≥ 1, be a positive random
field describing the spatial variation of a quantity of interest over the domain D, usually a spatially varying intensity or
risk, whose values are not observable. To learn about this random field, spatial information is collected on random variables
Y1, . . . , Yn that take nonnegative integer values and are stochastically related toΛ(·). Two examples illustrate this situation.
In the Bjertorp Farm dataset analyzed by Guillot et al. [19], Λ(s) represents weed intensity at location s and Yi is the
number of weeds observed within a rectangular frame of area ti centered at sampling location si. In the Rongelap Island
dataset analyzed by Diggle et al. [13], Λ(s) represents the level of radio-nuclide Caesium (137Cs) at location s and Yi is the
number of photon emissions collected at a sampling location si by a gamma-ray counter during a period of time ti. In these
examples, for each of a set of sampling locations s1, . . . , sn within D, count measurements Yi are taken, together possibly
with measurements of location-dependent covariates. The main goal in both examples is the prediction of Λ(·) throughout
D based on the data Y = (Y1, . . . , Yn)

′ and the covariate information, if available, but answering regression questions might
be a secondary goal; see Section 5 for further details about these datasets.

The aim is for a class of models constructed to possess the following properties:

(a) The count variables Yi have overdispersed marginal distributions, a property found to hold in many spatial (and non-
spatial) count datasets.

(b) Themarginal distributions of the random field {Λ(s) : s ∈ D} are given by a conjectured parametric family of continuous
cdfs G = {Gs(·) : s ∈ D}, where each cdf has support [0, ∞).

The proposed class of models for the random vector Y and random field {Λ(s) : s ∈ D} that satisfies the aforementioned
properties is defined in terms of their family of finite-dimensional distributions. It is hierarchically specified as follows:
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