
Journal of Multivariate Analysis 120 (2013) 85–101

Contents lists available at SciVerse ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Factor copula models for multivariate data
Pavel Krupskii ∗, Harry Joe
Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada

a r t i c l e i n f o

Article history:
Received 19 August 2012
Available online 27 May 2013

AMS 2000 subject classifications:
62H25
60H99

Keywords:
Conditional independence
Factor analysis
Pair-copula construction
Partial correlation
Tail dependence
Tail asymmetry
Truncated vine

a b s t r a c t

General conditional independencemodels for d observed variables, in terms of p latent vari-
ables, are presented in terms of bivariate copulas that link observed data to latent variables.
The representation is called a factor copula model and the classical multivariate normal
model with a correlation matrix having a factor structure is a special case. Dependence
and tail properties of the model are obtained. The factor copula model can handle mul-
tivariate data with tail dependence and tail asymmetry, properties that the multivariate
normal copula does not possess. It is a good choice for modeling high-dimensional data as
a parametric form can be specified to have O(d) dependence parameters instead of O(d2)
parameters. Data examples show that, based on the Akaike information criterion, the fac-
tor copula model provides a good fit to financial return data, in comparison with related
truncated vine copula models.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The multivariate normality assumption is widely used to model the joint distribution of high-dimensional data. The
univariate margins are transformed to normality and then the multivariate normal distribution is fitted to the transformed
data. In this case, the dependence structure is completely defined by the correlation matrix and different models on the
correlation structure can be used to reduce the number of dependence parameters from O(d2) to O(d), where d is the
multivariate dimension or number of variables. When dependence in the observed variables is thought to be explained
by a few latent variables, the Gaussian or normal factor model assumes a linear relation on a few unobserved normally
distributed factors.

The main contribution of this paper is to propose and study the copula version of the multivariate normal distribution
with a correlation matrix that has a factor structure. We name the extension as the factor copula model. The classical factor
model is a special case but within our framework, the parameterization is different as it involves partial correlations. The
factor copula model is useful when the dependence in observed variables is based on a few unobserved variables, and there
exists tail asymmetry or tail dependence in the data, so that the multivariate normality assumption is not valid.

The copula is a function linking univariate margins into the joint distribution. Let X = (X1, . . . , Xd) be a random
d-dimensional vectorwith the joint cumulative distribution function (cdf) FX. Let FXj be themarginal cdf ofXj for j = 1, . . . , d.
The copula CX, corresponding to FX, is a multivariate uniform cdf such that FX(x1, . . . , xd) = CX(FX1(x1), . . . , FXd(xd)). By
Sklar [26], there exists a unique copula CX if FX is continuous. Copulas are suitable for modeling non-normal data such as
financial asset returns or insurance data; see [24,21] and others. The superiority of non-normal copulas over the normal
copula in modeling financial and insurance data has been discussed in [7].
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The vine copula or the pair-copula construction has been popular in recent years; see, for example [20,4]. The number
of bivariate (conditional or marginal) copulas used in the vine construction is d(d − 1)/2 for d variables, so typically vine
copulas involve O(d2) number of parameters. Dißmann et al. [6] propose an algorithm which allows the fit of regular vines
to data. If d is large (e.g., many asset returns), the conditional independence can be assumed at higher levels of the vine to
reduce the number of parameters in a truncated vine model to O(d); see also [5]. The factor copula model is an alternative
copula modeling approach to truncated vines that has the order of O(d) dependence parameters.

In many multivariate applications, the dependence in observed variables can be explained through latent variables; in
multivariate item response in psychology applications, latent variables are related to the abstract variable being measured
through items, and in finance applications, latent variables are related to economic factors. Classical factor analysis assumes
(after transforms) that all observed and latent random variables are jointly multivariate normal. Books on multivariate
analysis (see for example [16]) often have examples with factor analysis and financial returns. We show for some financial
return data that, in terms of the Akaike or Bayesian information criteria, the factor copula model can be a better fit than
truncated vines (because of a simpler dependence structure) and the classical factor model (because of tail dependence).

An important advantage of factor models is that they can be nicely interpreted. In case of stocks in a common sector,
the current state of this sector can affect all of their change of prices, but the sector index, if measured, might not contain
all of the latent information that explains the dependence. Similarly for market data, the state of the economy as a whole
can determine the latent dependence structure. The ‘‘state variables’’ are aggregated frommany exogenous variables (such
as interest rate, refinancing rate, political instabilities, etc.) and cannot be easily measured, therefore factor copula models
based on latent variables might be a good choice.

The rest of this paper is organized as follows. In Section 2 we define the factor copula model and give more details for the
one-factor and two-factormodels. Some dependence and tail properties of bivariatemargins of the factor copulamodels are
given in Section 3. The results imply that different types of dependence and tail asymmetry can bemodeledwith appropriate
choices of bivariate linking copulas. Computational details for maximum likelihood estimation of the factor copula model
are given in Section 4. Section 5 discusses diagnostics for choices of bivariate linking copulas, reports on some simulation
results, and shows applications of the factor copula model to US stock returns. Section 6 concludes with a discussion of
future research.

2. Factor copula model

In multivariate models with copulas, a copula or multivariate uniform distribution is combined with a set of univariate
margins. This is equivalent to assuming that variables X1, . . . , Xd have been transformed to uniform random variables. So
we assume that U = (U1, . . . ,Ud) is a random vector with Ui ∼ U(0, 1). The joint cdf of the vector U is then given by
C(u1, . . . , ud) where C is a d-dimensional copula. In the p-factor copula model, U1, . . . ,Ud are assumed to be conditionally
independent given p latent variablesV1, . . . , Vp.Without loss of generality,we can assumeVi are independent and identically
distributed (i.i.d.) U(0, 1). Let the conditional cdf of Uj given V1, . . . , Vp be denoted by Fj|V1,...,Vp . Then,

C(u1, . . . , ud) =


[0,1]p

d
j=1

Fj|V1,...,Vp(uj|v1, . . . , vp) dv1 · · · dvp. (1)

Any conditional independence model, based on p independent latent variables, can be put in this form after transforms
to U(0, 1) random variables. Hence, the dependence structure of U is then defined through conditional distributions
F1|V1,...,Vp , . . . , Fd|V1,...,Vp . We will call (1) a factor copula model, with Fj|V1,...,Vp expressed appropriately in terms of a sequence
of bivariate copulas that link the observed variables Uj to the latent variables Vk. Some of the bivariate copulas are applied
to conditional distributions. Details are given in Sections 2.1 and 2.2.

In the finance literature there are several factor copulamodels (e.g., Section 9.7.2 ofMcNeil et al. [21], Hull andWhite [12]
and Oh and Patton [23]); these all have a linear latent structure and are not as general as our model. Oh and Patton [23] have
overlapping ideas with our research but our approachwas developed independently of their approach.With the conditional
independence model with 2 or more latent variables, there could be alternative ways to specify a model for Fj|V1,...,Vp than
we have. Throughout the remainder of this paper, we assume that all copulas are absolutely continuous and have densities,
so that the log-likelihood for continuous data will involve the density of the factor copula.

2.1. One- and two-factor copula models

We first study the case of p = 1 latent variable in (1). For j = 1, . . . , d, denote the joint cdf and density of (Uj, V1) by
Cj,V1 and cj,V1 respectively. Since U1, Vj are U(0, 1) random variables, then Fj|V1 is just a partial derivative of the copula Cj,V1
with respect to the second argument. That is, Fj|V1(uj|v1) = Cj|V1(uj|v1) = ∂Cj,V1(uj, v1)/∂v1. With p = 1, Eq. (1) becomes:

C(u1, . . . , ud) =

 1

0

d
j=1

Fj|V1(uj|v1) dv1 =

 1

0

d
j=1

Cj|V1(uj|v1) dv1. (2)
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