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a b s t r a c t

The cluster bootstrap resamples clusters or subjects instead of individual observations
in order to preserve the dependence within each cluster or subject. In this paper, we
provide a theoretical justification of using the cluster bootstrap for the inferences of
the generalized estimating equations (GEE) for clustered/longitudinal data. Under the
general exchangeable bootstrap weights, we show that the cluster bootstrap yields a
consistent approximation of the distribution of the regression estimate, and a consistent
approximation of the confidence sets. We also show that a computationally more efficient
one-step version of the cluster bootstrap provides asymptotically equivalent inference.

Published by Elsevier Inc.

1. Introduction

To analyze the clustered/longitudinal data, [10] introduced the Generalized Estimating Equations (GEE) approach to take
into account of the correlation structurewithin each cluster/subject without specifying the joint distribution of observations
from a cluster/subject. The sandwich variance estimator is widely used for GEE in the asymptotic inference of the regression
parameters, e.g. construction of confidence sets, and is robust to mis-specification of the correlation structure. However,
many empirical studies have shown that the sandwich estimator is usually downward biased and the bias could be
substantial when the sample size is small, especially for binary responses [15,19,12]. To correct the underestimation by the
sandwich estimator,modifications to the sandwich estimator have been investigated [12,9]. However, these bias corrections
are only approximations and may be computationally unstable. Moreover, the asymptotic normality, which serves as the
theoretical basis of using the sandwich estimator, need not be a good approximation when the number of subjects is small.

Therefore, resampling methods have been proposed in the literature to overcome the limitation of using the asymptotic
normal inference and the sandwich estimator. Sherman and le Cessie [19] proposed the cluster bootstrap, which resamples
subjects of a longitudinal data set, and argued that, by resampling subjects, the correlation structure within each subject
is maintained and the bootstrap confidence intervals are produced in an automatic way so that the correlation structure
can be left unspecified. Their simulation study showed that the bootstrap intervals are superior to the normal confidence
interval built upon the sandwich estimator of variances. The superior empirical performances of bootstrapping longitudinal
datawere also reported in [14,7,3]. Despite various empirical evidences supporting the practical use of the cluster bootstrap,
as far as we are aware, there is no theoretical study of this method.

In this paper, we provide a theoretical justification of using the cluster bootstrap for inference in GEE. We show that,
under reasonable regularity conditions, the cluster bootstrap yields a consistent approximation of the distribution of the
regression estimate, and a consistent approximation of the confidence sets. We establish our theoretical results under the
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general setup of the exchangeably weighted cluster bootstrap, which contains the usual resample-cluster bootstrap as a
special case. By choosing an appropriate weighting scheme, the general cluster bootstrap is useful to handle the difficult
cases when the usual resample-cluster bootstrap breaks down, such as the zero or near-zero cell counts of the resamples
for binary responses, when the number of subjects is small.

This paper also studies a computationally more efficient version of the cluster bootstrap. The cluster bootstrap is
computationally expensive, because one needs to solve a new estimating equation for each bootstrap sample and the
number of bootstrap samples is usually chosen to be quite large in order to achieve the desired inference accuracy. The
one-step cluster bootstrap, which only computes one Gauss–Newton step for each bootstrap sample, is computationally
more efficient because it avoids the full iteration in solving the estimating equations. We show that the one-step cluster
bootstrap is asymptotically equivalent to the cluster bootstrap based on the full iteration. Our simulation results further
provide empirical evidence.

The rest of the paper is organized as follows. Section 2 reviews theGEE formulation and gives rigorous asymptotic analysis
on the regression estimate by extending the work by Xie and Yang [25]. Section 3 describes the cluster bootstrap sampling
schemes and provides their theoretical justifications. Section 4 presents empirical results in terms of both simulated data
and real data.

2. Generalized estimating equation

2.1. GEE formulation

Assume that the observations on different subjects are independent and the observations on the same subject are cor-
related. Let Yi = (yi1, yi2, . . . , yimi)

′ be an mi-vector of responses and Xi = (xi1, xi2, . . . , ximi)
′ be the corresponding mi × p

covariate matrix for 1 ≤ i ≤ n. Suppose the marginal mean and covariance matrix of Yi conditional on covariates are µi(β0)
and Σi(β0), where β ∈ B ⊂ Rp. An appealing feature of GEE is the incorporation of the ‘‘working covariance matrix’’
Vi(α, β) into the inferential process, which avoids specifying the possibly complicated correlation structure within each
subject. Vi(α, β) is usually expressed as the form Ai(β)Ri(α)Ai(β), where A2

i (β0) is a diagonal matrix of variance for Yi and
Ri(α) is the ‘‘working’’ correlation matrix fully specified by a nuisance vector α ∈ A ⊂ Rs. The GEE introduced in [10] is of
the following form:

Un(α, β) =

n
i=1

Uni(α, β) =

n
i=1

D′

i(β)V−1
i (α, β)Si(β), (1)

where Di(β) = ∂µi(β)/∂β and Si(β) = Yi − µi(β). Clearly, Uni(α, β) is similar to the quasi-likelihood proposed in [24]
except that the Vi is only a function of β . We say that Vi(α, β) is correctly specified if there exists a α ∈ A such that
Vi(α, β0) = Σi(β0), i.e., Ri(α) equals to the true correlation matrix Ri0, for any i = 1, . . . , n. Here we give a concrete form of
Uni(α, β) when assuming the marginal distribution of yij conditional on the covariate xij follows the exponential family, i.e.

f (yij) = exp{yijθij − a(θij) + b(yij)}, (2)

where θij = h(x′

ijβ) and h is a known injective function. In this case, we have

Si(β) = Yi − (ȧ(θi1), . . . , ȧ(θimi))
′, (3)

A2
i (β) = diag(ä(θij)), (4)

Di(β) = Ai(β)diag(ḣ(x′

ijβ))Xi. (5)

In this paper, we treat the correlation parameter α as the nuisance parameter. In practice, we can estimate α based on a
preliminary estimate of β , e.g.,βI under the working independence assumption, using the method of moment [10]. Wang
and Carey [22,23] discussed the estimation of α for well-known correlation structures. Under mild conditions, we can easily
obtain a root-n consistentα. Therefore, we solveβ from the following estimated GEE:

Un(α, β) = 0, (6)

whereα is any root-n consistent estimate. The profile estimation approach employed in [10] is expected to improve only
the second order efficiency of estimating β , and will also be discussed in this paper. We define α0 as the limiting value of the
estimatorα. If Vi is correctly specified, then Ri(α0) is the true correlation matrix Ri0 under regularity conditions. However,
if Vi is not correctly specified, Ri(α0) is unnecessarily Ri0.

2.2. Asymptotic results of GEE estimator

Liang and Zeger [10] proved the asymptotic normality of the GEE estimator β under heuristic conditions. Xie and
Yang [25] provided rigorous asymptotic analysis on the existence, consistency and asymptotic normality ofβ that solves the
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