
Journal of Multivariate Analysis 115 (2013) 108–121

Contents lists available at SciVerse ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Comparison of binary discrimination methods for high dimension low
sample size data
A. Bolivar-Cime a,∗, J.S. Marron b

a Department of Probability and Statistics, CIMAT, Jalisco S/N, Col. Valenciana, CP 36240, Guanajuato, Gto, Mexico
b Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC 27599-3260, USA

a r t i c l e i n f o

Article history:
Received 10 June 2011
Available online 12 October 2012

AMS 2000 subject classifications:
primary 62H30
secondary 62E20

Keywords:
Asymptotic analysis
Binary discrimination
High dimensional data
Machine learning

a b s t r a c t

A comparison of some binary discrimination methods is done in the high dimension
low sample size context for Gaussian data with common diagonal covariance matrix. In
particular we obtain results about the asymptotic behavior of the methods Support Vector
Machine, Mean Difference (i.e. Centroid Rule), DistanceWeighted Discrimination,Maximal
Data Piling and Naive Bayes when the dimension d of the data sets tends to infinity and the
sample sizes of the classes are fixed. It is concluded that, under appropriate conditions, the
first four methods are asymptotically equivalent, but the Naive Bayes method can have a
different asymptotic behavior when d tends to infinity.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

This work deals with binary discrimination analysis in the High-Dimension, Low Sample Size (HDLSS) framework for
Gaussian data.We focus on the study of asymptotic behavior of the followingmethods for two-class discrimination: Support
Vector Machine (SVM), Mean Difference (MD), Distance Weighted Discrimination (DWD), Maximal Data Piling (MDP) and
Naive Bayes (NB). The HDLSS asymptotics of the first three methods have been previously studied in Hall et al. [7], where
the probability of correct classification of a new data point is considered when the dimension d of the training data sets
tends to infinity for fixed sample sizes of the classes. The present paper takes a different asymptotic viewpoint, based on the
angle between the normal vectors of the separating hyperplane. We find conditions that characterize both consistency and
strong inconsistency. Previous comparison of these methods has been done by simulations in Marron et al. [10], and Ahn
and Marron [1]. A further contribution of the present paper is theoretical analysis of some empirical phenomena observed
in [10,1], by specifically studying the asymptotic behavior of the normal vectors to the separating hyperplanes of these three
methods, as the data dimension increases.

We give a description of the methods mentioned above in Section 2. In Section 3 we show that the first four methods
have asymptotically the same first order behavior when the dimension d of the data sets tends to infinity, for fixed sample
sizes of the classes. Specifically, we see that when the data sets are Gaussian with common diagonal covariance matrix and
one set has mean zero and the other has mean vd, then the normal vectors of the separating hyperplanes tend to be in the
same direction as vd when ∥vd∥ ≫ d1/2, i.e. are consistent, and tend to be orthogonal to vd when ∥vd∥ ≪ d1/2, i.e. are
strongly inconsistent. This paper also contains the HDLSS analysis of behavior in the interesting boundary case ∥vd∥ ≈ d1/2.
Moreover we observe that the NB method may have a different asymptotic behavior from the other four methods and may
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be inconsistent in many situations where the other methods are consistent. We talk about some simulations that we have
done to assess the theoretical results of this paper in Section 4. In Section 5 we give a discussion of our results. Finally, in
Section 6 we give the proofs of the results presented in Section 3.

2. Binary discrimination methods

In this section we present the linear classification methods treated in this paper, which are based on separating
hyperplanes. Suppose that we have the following training data set

(x1, w1), (x2, w2), . . . , (xN , wN), (1)

where xi ∈ Rd and wi ∈ {−1, 1}, for i = 1, 2, . . . ,N . In particular, we have two classes of data, the classes C+ and C−

corresponding to the vectors withwi = 1 andwi = −1 respectively. Let X = [x1, x2, . . . , xN ] be the d×N matrix of training
data and w = (w1, w2, . . . , wN)⊤ be the vector of corresponding class labels. The following notation will be used:
• W is the N × N diagonal matrix with the elements of w on the diagonal,
• X+ (X−) is the sub-matrix of X corresponding to the class C+ (C−),
• m (n) is the cardinality of the class C+ (C−),
• 1k is the k-dimensional vector of ones.

We say that the training data set (1) is linearly separable if there exists a hyperplane for which all the data of the class C+

are on one side of the hyperplane and all the data of the class C− are on the other side. In this case a hyperplane with such
property is called a separating hyperplane of the training data set.

Only the separable case is treated here, because in HDLSS situations the data from continuous probability densities are
linearly separable almost surely (see [7]), and we consider multivariate Gaussian data in this paper.

2.1. Support Vector Machine

An introduction to the Support Vector Machine (SVM) method for binary discrimination analysis is given in this section.
For more comprehensive and detailed studies see for example [4–6,8,15,16].

The SVMmethod was proposed by Vapnik in [15,16]. It is one of the most popular binary discrimination methods in the
literature. In the linearly separable case, the SVM method consists of finding a separating hyperplane that maximizes the
distances of the hyperplane to the nearest vector of each class.

Here we develop SVM from several view points, which will be needed in the following analysis. Suppose that there exist
a vector v and a scalar b such that the following inequalities hold:

v⊤xi + b ≥ 1, if wi = 1,

v⊤xi + b ≤ −1, if wi = −1. (2)

In this case the hyperplane

v⊤x + b = 0

is a separating hyperplane of the training data set. Note that the inequalities in (2) can be written as

wi(v
⊤xi + b) ≥ 1, i = 1, 2, . . . ,N. (3)

The vectors xi that satisfy the equality in (3) are called support vectors. That is, the support vectors are the training vectors
that belong to one of the hyperplanes

v⊤x + b = −1 or v⊤x + b = 1. (4)

The set of support vectors will be denoted by SV .
Let d+ and d− be the shortest distances from the separating hyperplane to the nearest vector in C+ and C−, respectively.

Then the margin of the separating hyperplane is defined as d0 = d+ + d−. Hence, the margin of the separating hyperplane
is the distance between the hyperplanes given in (4) which is

d0 =
2

∥v∥
.

In the separable case the optimal separating hyperplane or SVM hyperplane

v⊤

0 x + b0 = 0

is the unique separating hyperplane with a maximal margin. Thus the SVM hyperplane maximizes 2/∥v∥ subject to the
conditions (3). Equivalently, the SVM hyperplane solves the optimization problem

minimize
∥v∥

2

2
,

subject to wi(v
⊤xi + b) ≥ 1, i = 1, 2, . . . ,N. (5)
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