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a b s t r a c t

Pollard showed for k-means clustering and a very broad class of sampling distributions that
the optimal clustermeans converge to the solution of the related population criterion as the
size of the data set increases. We extend this consistency result to k-parameters clustering,
a method derived from the heteroscedastic, elliptical classification model. It allows a more
sensitive data analysis and has the advantage of being affine equivariant. Moreover, the
present theory yields a consistent criterion for selecting the number of clusters in such
models.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The k-means algorithm, Steinhaus [32], enjoys great popularity in data analysis, knowledge discovery, and vector
quantization in order to partition a data set x = (x1, . . . , xn) ∈ Rd in a given number g ≥ 2 of clusters. Let x1, . . . , xn
be the data set to be clustered, let ℓi be the label of the cluster of data point xi, 1 ≤ i ≤ n, and write ℓ = (ℓ1, . . . , ℓn). If xj(ℓ)
stands for the cluster mean andWj(ℓ) =


i:ℓi=j(xi − xj(ℓ))(xi − xj(ℓ))⊤ for the SSP matrix (‘‘sum of squares and products’’)

of cluster j w.r.t. ℓ, this algorithm computes the Pooled Trace (or Ward’s) criterion

argmin
ℓ

tr
g

j=1

Wj(ℓ) = argmin
ℓ

g
j=1


ℓi=j

∥xi − xj(ℓ)∥2.

It tends to produce spherical clusters of about equal size and about equal scatter, if the data set allows this. In fact, Bock [5]
revealed the criterion as the ML estimator of a homoscedastic, isobaric, normal clustering model with spherical covariance
matrices; see also Bock [6]. Properties of the estimator and the algorithm are well known. In particular, MacQueen [25]
showed that the k-means algorithm reduces the criterion (and coined its name). Bryant and Williamson [8] studied the
asymptotic behavior of a class of classificationML estimators and applied their result to a univariate, homoscedasticmixture
of normal populations. Pollard [29,30] proved for a very broad class of sampling distributions and homoscedastic, isobaric,
spherical statistical models that the optimal means converge as the size of the data set increases. He also identified the limit
as the solution to the related population criterion. This means that the global maximum is the favorite solution if the data
set is large. His result is remarkable inasmuch as the sampling distribution may be very general and very different from
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Fig. 1. Example of a partition obtained from improper use of Ward’s criterion. The estimated means and scales are indicated by the two circles.

the model. This property is, however, not specific to the classification model. In fact, White [35] proved consistency of ML
estimators for independent observations coming from an unspecified parent distribution.

In vector quantization, application ofWard’s criterion and the k-means algorithm, here ascribed to Lloyd [24], is justified
and standard. The engineer using optimal quantization takes a geometric standpoint and decomposes a data set in subsets
that unite nearby points and separate distant ones w.r.t. some given metric. Their application is less justified in cluster
analysis where we search for causes that generate the data. To this end, we assume that the causes manifest themselves
in different populations that induce in the data set cohesive (compact) clusters of possibly different sizes and extents and
separated by location or sometimes by scale. The engineer even decomposes a data set uniform on a square, the cluster
analyst finds that this data set bears no cluster structure, it originates from a single source. It is a matter between quantity
and quality. Generally accepted, logical, mathematical definitions of the concepts of ‘‘cohesion’’ and ‘‘separation’’ based on
the data set do not exist although there are validation methods and tests that are useful in this respect. This is contrary
to mathematical topology where the analogous notion of a ‘‘connected component’’ is clearly and logically defined. Both
concepts appeal also to intuition.

In the event of elliptical, non-spherical clusters,Ward’s criterion (and, hence, the k-means algorithm)may lead to a result
unacceptable in cluster analysis. A typical example is presented in Fig. 1. The two-dimensional data set was sampled from
two normal populations of equal scales elongated in horizontal direction and lying side by side. Up to small probability, the
populations are separated by a horizontal line between them, but Ward’s criterion traces a separator perpendicular to it as
shown in Fig. 1. The clusters obtained are neither isolated nor cohesive as visual inspection shows. Moreover, the solution
created byWard’s criterion is not only inappropriate in the above sense, it also does not reflect the partition induced by the
two original populations. The reason for the failure of Ward’s criterion in the sense of cluster analysis is that the underlying
populations are not spherical. Generally, an inappropriate, narrow model may ‘‘create’’ a wrong structure in the data set. It
is therefore important to base cluster criteria on more general statistical models.

Such a model was proposed by Scott and Symons [31]. They used the likelihood paradigm to derive a criterion for the
heteroscedastic, isobaric, normal clustering model with arbitrary covariance matrices applicable to such a more general
situation, the heteroscedastic ML Determinant criterion

g
j=1

nj(ℓ) log det Sj(ℓ) (1)

to be minimized w.r.t. ℓ. Here, nj(ℓ) denotes the size of cluster j w.r.t. ℓ and Sj(ℓ) = Wj(ℓ)/nj is its scatter matrix.
This criterion works nicely in the case of elliptical clusters of about equal sizes but may otherwise run into trouble.

Symons [33] corrected this shortcoming in considering the labeling ℓ not as a parameter (which it is not since its length
increases with the data set) but as a hidden variable drawn from the n-fold product π ⊗ · · · ⊗ π, π = (π1, . . . , πg), on
(1..g)(1..n). It acts as a prior probability and, since the number g is small, can be estimated by an empirical Bayesian procedure.
Symons arrives at the heteroscedastic MAP Determinant criterion
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nj(ℓ) log det Sj(ℓ), (2)

again to be minimized w.r.t. ℓ. The criterion differs from the heteroscedastic ML Determinant criterion (1) in the entropy
H(p1, . . . , pg) = −


j pj log pj of the cluster proportions pj = nj(ℓ)/nwhich counteracts the tendency of theML criterion to

create clusters of about equal sizes. This is the state of the art concerning the normal classification model of clustering. The
related iterative relocation algorithm alternates between clustering and parameter estimation. We call it the k-parameters
algorithm. This name reminds of the k-means algorithm but expresses the fact that it is not only means that are estimated
but also other parameters such as scale matrices and weights. The criterion can be extended to elliptical basic models
Eφ,m,V (x) =

√
det V−1e−φ((x−m)T V−1(x−m)) withmeanm, scale matrix V , and a fixed radial function φ. The conditional density

becomes

f (ℓ, x | π,m,V) =

n
i=1

πℓiEφ,mℓi ,Vℓi
(xi) (3)
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