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a b s t r a c t

This paper studies fundamental aspects of modelling data using multivariate Watson
distributions. Although these distributions are natural for modelling axially symmetric
data (i.e., unit vectors where ±x are equivalent), for high-dimensions using them can be
difficult—largely because for Watson distributions even basic tasks such as maximum-
likelihood are numerically challenging. To tackle the numerical difficulties some approx-
imations have been derived. But these are either grossly inaccurate in high-dimensions
[K.V. Mardia, P. Jupp, Directional Statistics, second ed., John Wiley & Sons, 2000] or when
reasonably accurate [A. Bijral,M. Breitenbach, G.Z. Grudic,Mixture ofWatson distributions:
a generative model for hyperspherical embeddings, in: Artificial Intelligence and Statistics,
AISTATS 2007, 2007, pp. 35–42], they lack theoretical justification.We derive new approxi-
mations to themaximum-likelihood estimates; our approximations are theoretically well-
defined, numerically accurate, and easy to compute.We build on our parameter estimation
and discuss mixture-modelling withWatson distributions; here we uncover a hitherto un-
known connection to the ‘‘diametrical clustering’’ algorithm of Dhillon et al. [I.S. Dhillon,
E.M. Marcotte, U. Roshan, Diametrical clustering for identifying anticorrelated gene clus-
ters, Bioinformatics 19 (13) (2003) 1612–1619].

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Life on the surface of the unit hypersphere is more twisted than you might imagine: designing elegant probabilistic
models is easy but using them is often not. This difficulty usually stems from the complicated normalising constants
associated with directional distributions. Nevertheless, owing to their powerful modelling capabilities, distributions on
hyperspheres continue finding numerous applications—see e.g., the excellent book Directional Statistics [16].

A fundamental directional distribution is the von Mises–Fisher (vMF) distribution, which models data concentrated
around a mean-direction. But for data that have additional structure, vMF can be inappropriate: in particular, for axially
symmetric data it is more natural to prefer the (Dimroth–Scheidegger)–Watson distribution [16,21]. And this distribution
is the focus of our paper.

Three main reasons motivate our study of the multivariate Watson (mW) distribution, namely: (i) is fundamental to
directional statistics; (ii) it has not receivedmuch attention inmoderndata-analysis setups involving high-dimensional data;
and (iii) it provides a theoretical basis to ‘‘diametrical clustering’’, a procedure developed for gene-expression analysis [7].

Somewhat surprisingly, for high-dimensional settings, themWdistribution seems to be fairly under-studied. One reason
might be that the traditional domains of directional statistics are low-dimensional, e.g., circles or spheres. Moreover, in
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low-dimensions numerical difficulties that are rife in high-dimensions are not so pronounced. This paper contributes
theoretically and numerically to the study of the mW distribution. We hope that these contributions and the connections
we make to established applications help promote wider use of the mW distribution.

1.1. Related work

Beyond their use in typical applications of directional statistics [16], directional distributions gained renewed attention
in data-mining, where the vMF distribution was first used by Banerjee et al., [2,3], who also derived some ad-hoc parameter
estimates; Non ad-hoc parameter estimates for the vMF case were obtained by Tanabe et al. [20].

More recently, the Watson distribution was considered in [4] and also in [18]. Bijral et al. [4] used an approach similar
to that of [2] to obtain a useful but ad-hoc approximation to the maximum-likelihood estimates. We eliminate the ad-
hoc approach and formally derive tight, two-sided bounds which lead to parameter approximations that are accurate and
efficiently computed.

Our derivations are based on carefully exploiting properties (several new ones are derived in this paper) of the confluent
hypergeometric function, which arises as a part of the normalisation constant. Consequently, a large body of classical work
on special functions is related to our paper. But to avoid detracting from the main message and due to space limitations, we
relegate highly technical details to the Appendix and to an extended version of this paper [19].

Another line of related work is based on mixture-modelling with directional distributions, especially for high-
dimensional datasets. In [3], mixture-modelling using the Expectation Maximisation (EM) algorithm for mixtures of vMFs
was related to cosine-similarity based K -means clustering. Specifically, Banerjee et al. [3] showed how the cosine based
K -means algorithm may be viewed as a limiting case of the EM algorithm for mixtures of vMFs. Similarly, we investigate
mixture-modelling using Watson distributions, and connect a limiting case of the corresponding EM procedure to a clus-
tering algorithm called ‘‘diametrical clustering’’ [7]. Our viewpoint provides a new interpretation of the (discriminative)
diametrical clustering algorithmand also lends generative semantics to it. Consequently, using amixture ofWatson distribu-
tions we also obtain a clustering procedure that can provide better clustering results than plain diametrical clustering alone.

2. Background

Let Sp−1
= {x | x ∈ Rp, ∥x∥2 = 1} be the (p−1)-dimensional unit hypersphere centred at the origin.We focus on axially

symmetric vectors, i.e.,±x ∈ Sp−1 are equivalent; this is also denoted by x ∈ Pp−1, where Pp−1 is the projective hyperplane
of dimension p− 1. A natural choice for modelling such data is the multivariate Watson distribution [16]. This distribution
is parametrised by amean-direction µ ∈ Pp−1, and a concentration parameter κ ∈ R; its probability density function is

Wp(x;µ, κ) = cp(κ)eκ(µ
⊤x)2 , x ∈ Pp−1. (2.1)

The normalisation constant cp(κ) in (2.1) is given by

cp(κ) =
Γ (p/2)

2πp/2M
 1
2 ,

p
2 , κ

 , (2.2)

where M is the Kummer confluent hypergeometric function defined as [8, formula 6.1(1)] or [1, formula (2.1.2)]

M(a, c, κ) =

j≥0

aj

c j
κ j

j!
, a, c, κ ∈ R, (2.3)

and a0 = 1, aj = a(a+ 1) · · · (a+ j− 1), j ≥ 1, denotes the rising-factorial.
Observe that for κ > 0, the density concentrates around µ as κ increases, whereas for κ < 0, it concentrates around

the great circle orthogonal to µ. Observe that (Qµ)⊤Qx = µ⊤x for any orthogonal matrix Q . In particular for Qµ = µ,
µ⊤(Qx) = µ⊤x; thus, the Watson density is rotationally symmetric about µ.

2.1. Maximum likelihood estimation

We now consider the basic and apparently simple task of maximum-likelihood parameter estimation for mW distribu-
tions: this task turns out to be surprisingly difficult.

Let x1, . . . , xn ∈ Pp−1 be i.i.d. points drawn fromWp(x;µ, κ), theWatson density with mean µ and concentration κ . The
corresponding log-likelihood is

ℓ(µ, κ; x1, . . . , xn) = n

κµ⊤Sµ− lnM(1/2, p/2, κ)+ γ


, (2.4)

where S = n−1
n

i=1 xix
⊤

i is the sample scatter matrix, and γ is a constant term that we can ignore. Maximising (2.4) leads
to the following parameter estimates [16, Section 10.3.2] for the mean vector

µ̂ = s1 if κ̂ > 0, µ̂ = sp if κ̂ < 0, (2.5)
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