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a b s t r a c t

Asymptotic cumulants of the Bayes and pseudo Bayes estimators of ability in item response
theory are obtained up to the fourth order with the higher-order asymptotic variance
under possible model misspecification. Typical estimators are treated as special cases of
the (pseudo) Bayes estimator with the general weight. The asymptotic cumulants of the
estimators after studentization are also derived. From the comparison of the mean square
errors, the Bayes modal estimator with the standard normal prior is recommended for
point estimation. For interval estimation, however, the maximum likelihood estimator is
appropriate considering its small bias after studentization.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

For an ability test developed using item response theory (IRT), estimation of the proficiencies of examinees separately
from the calibration for items is a main purpose of the test. When the parameters of items have been well estimated in
an item bank using a large sample size, the item parameters may be seen as population ones though they are actually
estimates under possible model misspecification (p.m.m.). With the assumption of known item parameters, the ability of
an examinee, seen as an unknown fixed parameter, is estimated by various ways. Maximum likelihood (ML) estimation is a
standard method [24], [4, Section 20.3], where it is well known that the asymptotic variance of the ML estimator (MLE) is
given by the reciprocal of the test information or the Fisher information. Lord [25] gave the asymptotic biases of theMLE of an
ability and its monotone transformations under correct model specification (c.m.s.). Under p.m.m., Ogasawara [29] derived
the asymptotic cumulants up to the fourth order and the higher-order asymptotic variances of the MLEs of an ability and its
transformations with and without studentization.

In addition to ML estimation, Bayesian estimation has been used, where the maximum a posteriori (MAP) estimator
[34, Chapter 2], [6] and the expected a posteriori (EAP) estimator [2,3,6] are typical ones. The MAP estimator is also called
the Bayesmodal estimator (BME). Lord [26] gave the asymptotic bias of the BMEwith the standard normal prior under c.m.s.
One of the advantages of the BME is that finite values of the estimators are available in the cases of no correct/incorrect
responses while the corresponding MLEs are infinite.

The weighted likelihood estimator (WLE) given by Warm [36] looks like a BME, where the weight corresponding to the
first derivative of the logarithm of a prior with respect to the ability parameter is introduced such that the asymptotic bias
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disappears. Since it is difficult to derive the prior explicitly, the WLE may be seen as a pseudo BME. The properties of the
WLE and its applications were investigated using simulations by Kim and Nicewander [20] and Hoijtink and Boomsma [17].
Penfield and Bergeron [33] used the WLE in the generalized partial credit model. Another BME is given by using the
Jeffreys [18], [19, Section 3.10] uninformative prior written as JME in this paper. It is known that the WLE becomes equal to
the JME in the case of the 2-parameter logistic model (2PLM).

Further, in tailored testing a sequential method of ability estimation is available [31,32,35]. However, the method is not
dealt with in this paper. That is, it is supposed that estimation of ability is performed based on a fixed number of items.

The MLE, BME, WLE and JME can be seen as special cases of the estimator using the general weight, given as a function
of an ability, where the weight corresponds, in form, to the log-prior derivative with respect to the ability parameter. In the
case of the MLE, the weight is defined as null. The main purpose of this paper is to derive the asymptotic properties such
as the asymptotic cumulants up to the fourth order with the higher-order asymptotic variance and the mean square error
for the pseudo Bayes estimator using the general weight. We also show their applications to the four typical estimators
mentioned above. The asymptotic properties will be given for the estimators with and without studentization. It is known
that the so-called sandwich estimator of the asymptotic variance is robust against p.m.m. in the case of independent and
identically distributed (i.i.d.) cases (e.g., [28]). Unfortunately, for estimation of ability, the items in an ability test are generally
unidentical and do not give the advantage of the sandwich estimator (note that generally only one observation per examinee
is available for an item). So, studentization is performed using the estimated information with the assumption of c.m.s.
However, the asymptotic properties of the estimators will be given under p.m.m. as well as under c.m.s.

The results given in this paper will be useful when we choose good point estimators among the typical ones used in
practice by e.g., seeing the amounts of theirmean square errors,whichwill be algebraically given andnumerically illustrated.
Estimators are also used for interval estimation of the population value of an ability, where the asymptotic distributions of
the estimators after studentization are required. For interval estimation more accurate than the usual Wald confidence
interval (CI), the asymptotic cumulants in addition to the usual asymptotic variance are needed and will be given with
numerical illustration.

This paper is organized as follows. In Section 2, the definition of the (pseudo) Bayes estimator using the general weight is
given with their special cases. The population value of ability under model misspecification (m.m.) is also defined. Section 3
gives the asymptotic cumulants of the ability estimator before studentization while in Section 4 the corresponding results
for the studentized estimator are givenwith their advantages summarized as theorems. In Section 5, numerical examples are
shown using artificial and real data, where the results implied by the theorems are numerically illustrated. Finally, Section 6
gives some conclusive comparisons for typical ability estimators.

2. The pseudo Bayes estimator with the general weight

Let Uk be the dichotomous variable for the kth item (k = 1, . . . , n), where Uk = 1 denotes a correct response, Uk = 0 an
incorrect one by an examinee with ability θ , and n is the number of items. The probability of Uk = 1 for the examinee by an
IRT model is generally written as Pk = Pk(θ) = Pr(Uk = 1|θ) with Qk ≡ 1− Pk (k = 1, . . . , n), which is usually a monotone
function of θ and is assumed to be differentiable a required number of times. For instance, the familiar 3-parameter logistic
model (3PLM) is

Pk = Pr(Uk = 1|θ, ak, bk, ck) = ck +
1 − ck

1 + exp{−Dak(θ − bk)}
(k = 1, . . . , n), (2.1)

where D = 1.7, and the item parameters ak, bk and ck (k = 1, . . . , n) are assumed to be known. We also suppose that the
model may be misspecified. The corresponding true probability of Uk = 1 is denoted by

PTk ≡ ET (Uk|θ) with QTk ≡ 1 − PTk (k = 1, . . . , n), (2.2)

where ET (·) indicates that the expectation is taken using the true probability function for Uk. That is Pk ≠ PTk for at least one
item under m.m.

Let u = (U1, . . . ,Un)
′; then with the assumption of local independence, the likelihood of θ is written as L = L(θ |u) =n

k=1 P
Uk
k Q 1−Uk

k . Let p(θ) be the prior density for θ . Then, the estimator θ̂GW of ability using the general weight g(θ) ≡

∂ log p(θ)/∂θ is defined as the θ that maximizes

l̄GW ≡ n−1
{log L + log p(θ)} ≡ l̄ + n−1 log p(θ)

= n−1
n

k=1

{Uk log Pk + (1 − Uk) logQk} + n−1 log p(θ), (2.3)

where l̄ is the mean log-likelihood. Note that even if p(θ) is not available in an explicit form, g(θ) can still be defined. In
this case θ̂GW is defined using the modified score in pseudo Bayesian estimation. The four special cases are summarized as
follows:

θ̂GW = θ̂ML when g(θ) = 0, θ̂GW = θ̂BM when g(θ) = −θ,

θ̂GW = θ̂WL when g(θ) = j̄/(2ī), and θ̂GW = θ̂JM when g(θ) = ī′/(2ī), (2.4)
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