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a b s t r a c t

In this paper, the multilinear normal distribution is introduced as an extension of the
matrix-variate normal distribution. Basic properties such as marginal and conditional
distributions, moments, and the characteristic function, are also presented. A trilinear
example is used to explain the general contents at a simpler level. The estimation of
parameters using a flip-flop algorithm is also briefly discussed.
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1. Introduction

The matrix normal distribution, being an extension of the ordinary multivariate (vector-) normal distribution, can
be regarded as a bilinear normal distribution — a distribution of a two-way (two-component) array, each component
representing a vector of observations. The complexity of data, which has become a norm of the day for a variety of applied
research areas, requires a consideration of extension of the bilinear normal distribution. The present paper presents this
extension, correspondingly named multilinear normal distribution [20, Ch. 2], based on a parallel extension of bilinear
matrices to multilinear tensors [9]. The adjectivemultilinear has not yet found its way into the general statistical literature.
One may, however, trace the same or similar nomenclature with reference to the analysis of complicated data structures,
with a commonly used alternative expression being analysis of multiway data [21, p. 16]. [21] also gives some useful
references on multiway analysis, particularly based on tensor algebra; see also [10].

Compared to the multivariate normal distribution, the multilinear distribution has been a relatively uncharted territory
of research. Still, however, some interesting and very useful applications of multilinear distribution can be found in the
literature. Particularly, the emergence of complicated and enormousdata sets in recent decades has given serious impetus for
such applied literature to flourish. As a byproduct, this has caused a huge amount of literature on the theory and applications
of tensors in statistics.

One of the most important uses of the multilinear normal (MLN) distribution, and hence tensor analysis, is perhaps in
magnetic resonance imaging (MRI). A nice work, particularly focusing on the need to go frommatrix-variate to tensor-based
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Fig. 1. The box visualizes a three-dimensional data set as a third order tensor.

MLN distribution, is given in [3]. They genuinely argue why a vectorial treatment of a complex data set which actually needs
a tensorial treatment and the application of multilinear normality, can lead to wrong or inefficient conclusions. For some
more relevant work in the same direction, see [2,4,5], and the references cited therein, whereas a Bayesian perspective
is given in [25]; see also [15]. Analysis of multilinear, particularly trilinear data, has a specific attraction in chemometrics
and spectroscopy; see for example [23,6]. Other areas of applications include signal processing [18], morphometry [22],
geostatistics [24], and statistical mechanics [34], to mention a few. The extensive use of tensor variate analysis in these and
other similar fields has generated a special tensorial nomenclature, for example diffusion tensor, dyadic tensor, stress and
strain tensors etc. [27]. Similarly, special tensorial decompositions, for example PARAFAC and Tucker decompositions [21],
have been developed; for a general comprehensive review of tensor decompositions and their various applications,
see [8,19,32].

The use of a tensor, and its associated distributional structure, is even older, and with most frequent applications in
the theory of linear models. Some classical treatises on tensors and multilinear algebra are [1,28,7]. For a comprehensive
exposition of the use of tensors in statistics, see [27]. In another unique contribution, McCullagh had already introduced
tensor notation in statistics with particular reference to the computation of polynomial cumulants [26]; see also [17,11].
The decomposition of ANOVA models into the potential sources of variation is always an important task in the theory of
linear models. A tensorial treatment of ANOVA decomposition is given in [36], whereas a study of multilinear skewness
and kurtosis in linear models is given in [30]; see also [12]. [14] gives an interesting application in the theory of design of
experiments, with particular emphasis on rock magnetism. This paper uncovers some very attractive features of theoretical
and geometrical aspects of tensors, when considered from a statistical perspective. The geometrical consideration of tensors
in statistics, sometimes even more important than pure theoretical treatment, owes basically to setting the multivariate
normality on the Riemannian geometry [33]. As the simplest case of geometrical structure of the parameter space of bivariate
normal distribution, see [31], which also uses tensor notation to simplify complicated expressions.

This paper formally introduces MLN distribution, i.e., a normal distribution for the analysis of multiway data, and
discusses some basic properties. The rest of the paper is organized as follows. Section 2 introduces the MLN distribution,
along with some notation which simplifies the calculations that follow. In Section 3, some properties of the MLN
distribution, such as marginal and conditional distributions, moments, and characteristic function, are given. A special case
of trilinear normal distribution is interspersed throughout Sections 2 and 3 to explain the theory and notations at a more
comprehensible level. Section 4 presents an estimation procedure for the parameters of the distribution.

2. Model

Let X = (xi1,...,ik) : ×
k
i=1 pi be a tensor of order k, with the dimensions p1, p2, . . . , pk. Fig. 1 shows the special case when

k = 3. If pi = 1, 2 ≤ i ≤ k or 3 ≤ i ≤ kwe have the special cases when the tensor equals a vector or a linear mapping.
In order to perform explicit computations, the tensor has to be represented via coordinates. In this paper, the

representation will mainly be in vector form. However, the representation of the tensor X : ×
k
i=1 pi as a vector can be

done in several ways. If we look at the tensor space in Fig. 1, this means that we can look upon the tensor from different
directions.

Put epi1:ik = ep1i1 ⊗ · · · ⊗ epkik , where p = (p1, . . . , pk) and ⊗ denotes the Kronecker product. To emphasize the dimension,
we will write pk, or p(1 : k), instead of p. The vectors epj : p × 1 are the unit basis vectors, i.e., a p-vector with 1 in the jth
position, and 0 elsewhere. Further, let

p∗

j:l =

l
i=j

pi and p+

j:l =

l
i=j

pi, (1)

with the special cases

p∗
= p∗

1:k and p+
= p+

1:k, (2)

respectively. When there is no ambiguity, we shall drop the dimension from the basis vectors and write ep1i1 as ei1 , and epi1:ik
as ei1:ik , etc. We begin with a formal definition of tensor space.
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