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a b s t r a c t

Edgeworth-type expansions are given for the distribution of (normalized versions of)
the amplitude and phase of the mean of a sample of complex random variables. These
expansions are transformed to polar forms with applications to modeling signals from a
cell-phone. Limiting distributions of (normalized versions of) the amplitude and phase of
the mean are given for the cases: (1) population mean is zero, and (2) population mean is
non-zero. The results apply for distributions with finite cumulants.
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1. Introduction and summary

The need for the distribution of the amplitude and phase of the mean of a sample of complex random variables arises
in many applied areas. We mention: statistical physics, signal processing, circuits and systems, oceanography, microwave
theory and techniques, aerospace and electronic systems, military communications, waves in random media, acoustics,
speech and audio processing, optics, information theory, photonics technology, nuclear energy, solid-state electronics,
ultrasonics and frequency control.

As with the case of real random variables, the distribution of the amplitude and phase for a sample of complex random
variables cannot often be expressed in closed form. For instance, while deriving the distribution of the amplitude and phase
of a sinusoid in noise, Campbell et al. [2] find that: ‘‘The solution is in the form of an integral. Simplifications are possible
when the time duration of the process is large and when the signal-to-noise-ratio is very large or very small. Otherwise,
complicated numerical integration is required’’. While studying stochastically perturbed resonance, Neu [11] finds that the
distribution of the amplitude and phase can be determined only in the limit ‘‘where the time scale of resonance is much
shorter than the time scale of diffusion’’. Sums of random variables needed to compute the amplitude and phase do not have
closed form densities even for many commonly known univariate distributions. These include the Weibull [5], generalized
normal [12], Rayleigh [6], Rice [7], generalized gamma [13], Nakagami [3], Burr [9], and the lognormal [10] distributions.

Hence, there is a need for approximations for the distribution of the amplitude and phase. The aim of this paper is to
provide Edgeworth-type expansions for the joint distribution of (normalized versions of) the amplitude and phase of the
sample mean. The results obtained apply to distributions with finite cumulants.

The results are organized as follows. In Section 2, we give Edgeworth-type expansions for the distribution of (normalized
versions of) the amplitude and phase of samplemeans of complex random variables. In Sections 3 and 4, we transform these
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results to polar form for both the central case, that is, when the population mean is zero, and the non-central case. Suitably
normalized amplitude of the sample mean and the phase only have non-degenerate limit distributions in the non-central
case. In Section 5, we specialize to the case, where we have a sample of products of correlated complex random variables,
in particular products of complex normal random variables. The building blocks of the expansions are the bivariate Hermite
polynomials given in Appendix A.

We use the following notation: let R and C denote the sets of real and complex numbers. Set i =
√

−1. Let P1, . . . , Pn
be independent and identically distributed (i.i.d.) random variables in C. Then the sample mean is n−1Sn, where

Sn = Sn,R + iSn,C = Ampn exp(iθn) =

n
j=1

Pj with Pj = Rj + iCj. (1.1)

So, Ampn = |Sn| is the amplitude of the sum and Ampn/n is the amplitude of the sample mean. Also θn is the phase of the
sum and also the phase of the sample mean.

Proposition 1.1. We use the convention that the phase, θn = arg(Sn), lies in [0, 2π). Sometimes it is convenient to use instead
θ∗
n = tan−1(Sn,C/Sn,R) in [−π/2, π/2). They are related by θ∗

n = θn − kπ , where k = 0, 1, 2, 3 for Sn (or θn) in quadrants
1, 2, 3, 4, respectively.

We denote the joint cumulants of (Rj, Cj) by {κr,s}. These are generated by
∞

r,s=0

urvsκr,s/(r!s!) = logE [exp(uRj + vCj)],

and are assumed to be finite. So,

µ′
= E(Rj, Cj) = (κ1,0, κ0,1) and V = Cov(Rj, Cj) =


κ2,0 κ1,1
κ1,1 κ0,2


. (1.2)

Proposition 1.2. The results of this paper still hold under the weaker condition that P1, . . . , Pn are independent but not
necessarily identically distributed. In this case, κr,s must be interpreted as the average of the corresponding cumulants for
P1, . . . , Pn. For example, if each Pj is replaced by P∗

j = ajPj, where aj is a non-random real multiplier, then the results of this
paper hold for P∗

1 , . . . , P
∗
n with κr,s replaced by

κ∗

r,s = an,r+sκr,s,

where

an,r = n−1
n

j=1

arj ,

assuming that these are bounded as n → ∞ and that an,2 is bounded away from zero. So, if V = vI2, then the corresponding
covariance matrix for P∗

1 , . . . , P
∗
n is V∗

= v∗I2, where v∗
= an,2v.

Set

Yn = n−1/2

Sn,R − nκ1,0
Sn,C − nκ0,1


. (1.3)

By the Central Limit Theorem,

Yn
d

→ Y (1.4)

as n → ∞, whereY ∼ N2(0,V) inR2, a bivariate normalwithmeanE[Y] = 0 inR2 and 2×2 covariancematrixV = E[YY′
].

We denote its distribution byΦY(y;V) and its density by

φY(y;V) = (2π)−1
|V|

−1/2 exp(−y′V−1y/2)

for y in R2, assuming V is positive-definite. The convention in (1.4) for a random variable tending to a random variable is
convergence in distribution.

Our main results may be summarized as follows. We distinguish between the central case, when E[Pj] = 0 and the non-
central case, when E[Pj] ≠ 0.

The random vector (Amp2n/n, θn) has a non-degenerate limit when E[Pj] = 0, but converges to (∞, arg(E[Pj])) when
E[Pj] ≠ 0. In fact, the amplitude Ampn of the sum Sn has magnitude n1/2 in the central case and magnitude n in the non-
central case. Also

Amp2n/n
2 p

→ |µ|
2

= |E[Pj]|2 = κ2
1,0 + κ2

0,1.
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