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a b s t r a c t

In the present paper, we propose an exact test on the structure of the covariance matrix.
In its development the properties of the Wishart distribution are used. Unlike the classical
likelihood-ratio type tests and the tests based on the empirical distance, whose statistics
depend on the total variance and the generalized variance only, the proposed approach
provides more information about the changes in the covariance matrix. Via an extensive
simulation study the new approach is compared with the existent asymptotic tests.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Tests about the covariance matrix have significantly increased its popularity recently. Historically, the first test on the
covariance matrix was suggested by Mauchly [16] that is based on the likelihood ratio approach. Because the statistic of
this test depends on the determinant and the trace of the sample covariance matrix, the so-called generalized and total
variances respectively, it requires that the sample covariance matrix is non-singular which is the case with probability one
when the sample size is larger than the process dimension. Gupta and Xu [8] extended the likelihood-ratio test to non-
normal distributions by deriving the asymptotic expansion of the test statistic under the null hypothesis, while Bai et al. [2]
considered a modification of the likelihood-ratio test. The second approach considered in the statistical literature is based
on the empirical distance initially suggested by John [11] and Nagao [18]. These test statistics with some modifications
can also be applied for testing the covariance matrix in case of high-dimensional data (cf. [14,6]) even when the sample
size is smaller than the process dimension. Other approaches are based on the largest eigenvalue of the covariance matrix
[12,13] or they are derived by using the methods of randommatrix theory (cf. [5]).

In this paper we derive an exact test based on the examination of a fixed column of the sample covariance matrix. In
the development of this test the properties of theWishart distribution are used. Since an exact test is developed it is always
correctly sized.Moreover, the suggested test can also be applied if the sample size ismuch smaller than the dimension of the
process. Via an extensive simulation study we show that the new approach performs very well if changes in a few elements
of the covariance matrix take place.

The rest of the paper is structured as follows. In Section 2, we introduce a test about the covariance matrix. The
distribution of the test statistic is derived under both the null and alternative hypothesis. In Section 3, an extension of the test
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is provided. A very useful stochastic representation of the test statistic is obtained underH0 which shows that under the null
hypothesis the distribution is independent of the target matrix specified underH0. In Section 4, the distributional properties
of the test statistic under H1 are studied via an extensive Monte-Carlo study. Some proofs are given in the Appendix.

2. Test based on a column of the covariance matrix

Let X1, . . . ,Xn ∼ iiNp(µ, 6), p > 2, be an independent sample from the multivariate normal distribution with known
mean vector µ. Without loss of generality we assume that µ = 0p, where 0p stands for the p-dimensional vector of zeros.
The covariance matrix 6 is estimated by

S =
1
n

n
i=1

XiX′

i. (1)

If µ is an unknown quantity then instead of (1) we use the sample covariance matrix for estimating 6 expressed as

S̃ =
1

n − 1

n
i=1

(Xi − X̄)(Xi − X̄)′ with X̄ =
1
n

n
i=1

Xi. (2)

The two approaches differ only slightly from each other since it holds that (see, e.g. [17, p. 90])

nS ∼ Wp(n, 6) and (n − 1)S̃ ∼ Wp(n − 1, 6),

where the symbol Wp(n, 6) stands for the p-dimensional Wishart distribution with n degrees of freedom and covariance
matrix6 (cf. [17,20]).Moreover, both estimators are unbiased aswell as asymptotically normally distributed [17, pp. 90–91].
The last result is usually used for the derivation of asymptotic tests on the covariance matrix.

In this paperwe consider an alternative approach that is based on the distributional properties of theWishart distribution
and the singular Wishart distribution [20,4]. First, an exact test is proposed which is based on a column of the sample
covariance matrix and then it is generalized. In the derivation, no assumption on p, like n ≥ p, is imposed. The results hold
in all possible cases, i.e. for n ≥ p and n < p. While the properties of the Wishart distribution are applied for n ≥ p, we
make use of the distributional results derived for the singular Wishart distribution in the case of n < p.

We assume that 6 = 60 under H0 and 6 = 61 under H1. The matrices 60, 61, and S are partitioned as follows

60 =


ξ0 ν′

0
ν0 40


, 61 =


ξ1 ν′

1
ν1 41


, and S =


v t′
t W


. (3)

Let ϒ0 = 40 − ν0ν
′

0/ξ0 and ϒ1 = 41 − ν1ν
′

1/ξ1. Without loss of generality we now present a test based on the first
column of the covariance matrix 60. In case of the ith column the test statistic can be derived similarly. Here, instead of the
partitions (3), we construct the partition for the (i, i)-th element of the matrices 60, 61, and S as follows. Let ξ0,i denote
the (i, i)-th element of the matrix 60, i = 1, . . . , p. By ν0,i we denote the ith column of the matrix 60 without ξ0,i. Let 40,i
denote a square matrix of order p − 1, which is obtained from the matrix 60 by deleting the ith row and the ith column.
Finally, ϒ0,i = 40,i − ν0,iν

′

0,i/ξ0,i is calculated. In the same way we define ξ1,i, ν1,i, 41,i, ϒ1,i, vi, ti, and Wi by splitting
61 and S correspondingly. For presentation purposes we drop the index i in the notations if i = 1.

The hypotheses are given by

H0 : 6 = d60 against H1 : 6 = 61 ≠ d60, (4)

where d > 0 denotes an arbitrary (un)known constant. We define

η1 =
√
nϒ−1/2

0


t
v

−
ν0

ξ0


v1/2. (5)

Let φk(.; µ, 6) stand for the density function of the k-dimensional multivariate normal distributionwithmean vectorµ and
covariance matrix 6. In Theorem 1 we derive the distributions of the random vector η1 under both H0 and H1 hypotheses.

Theorem 1. (a) Let Xi ∼ iidNp(0p, 61), i = 1, . . . , n. Then the density function of η1 is given by

fη1(x) = 2
√

πn(n−1)/2

2(n−1)/2ξ
(n−1)/2
1 Γ

 n
2

φp−1

x; 0p−1, � + ξ111′


×


∞

0
yn−1φ1


y;

1′�−1x
√
n(ξ−1

1 + 1′�−11)
, n−1(ξ−1

1 + 1′�−11)−1


dy, (6)

where

1 = ϒ
−1/2
0


ν1

ξ1
−

ν0

ξ0


and � = ϒ

−1/2
0 ϒ1ϒ

−1/2
0 .

(b) Let Xi ∼ iidNp(0p, 60), i = 1, . . . , n. Then η1 ∼ Np−1(0p−1, Ip−1), where Ik denotes a k × k identity matrix.
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