Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/jmva)

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Compatibility results for conditional distributions

P[a](#page-0-0)trizia Berti^a, Emanuela Dreassi^{[b](#page-0-1)}, Pietro Rigo^{[c,](#page-0-2)}*

^a *Dipartimento di Matematica Pura ed Applicata ''G. Vitali'', Universita' di Modena e Reggio-Emilia, via Campi 213/B, 41100 Modena, Italy*

^b *Dipartimento di Statistica, Informatica, Applicazioni ''G. Parenti'', Universita' di Firenze, viale Morgagni 59, 50134 Firenze, Italy* ^c *Dipartimento di Matematica ''F. Casorati'', Universita' di Pavia, via Ferrata 1, 27100 Pavia, Italy*

a r t i c l e i n f o

Article history: Received 10 December 2012 Available online 13 January 2014

AMS 2010 subject classifications: 62F15 62H05 62G99 60A05 *Keywords:* Bayesian inference Compatibility of conditional distributions Exchangeability Gibbs sampling Markov random fields Multiple imputation

A B S T R A C T

In various frameworks, to assess the joint distribution of a *k*-dimensional random vector $X = (X_1, \ldots, X_k)$, one selects some putative conditional distributions Q_1, \ldots, Q_k . Each Q_i is regarded as a possible (or putative) conditional distribution for X_i given $(X_1, \ldots, X_{i-1},$ X_{i+1}, \ldots, X_k). The Q_i are compatible if there is a joint distribution *P* for *X* with conditionals Q_1, \ldots, Q_k . Three types of compatibility results are given in this paper. First, the X_i are assumed to take values in compact subsets of \mathbb{R} . Second, the Q_i are supposed to have densities with respect to reference measures. Third, a stronger form of compatibility is investigated. The law *P* with conditionals Q_1, \ldots, Q_k is requested to belong to some given class \mathcal{P}_0 of distributions. Two choices for \mathcal{P}_0 are considered, that is, $\mathcal{P}_0 = \{extchangeable laws\}$ and $P_0 =$ {laws with identical univariate marginals}.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let *I* be a countable index set and, for each $i \in I$, let X_i be a real random variable. Denote by P the set of all probability distributions for the process

 $X = (X_i : i \in I).$

Also, for each *P* ∈ P and *H* ⊂ *I* (with *H* \neq Ø and *H* \neq *I*), denote by P_H the conditional distribution of

 $(X_i : i ∈ H)$ given $(X_i : i ∈ I \setminus H)$ under *P*.

P_H is determined by *P* (up to *P*-null sets). In fact, to get *P_H*, the obvious strategy is to first select *P* $\in \mathcal{P}$ and then calculate *P_H*. Sometimes, however, this procedure is reverted. Let $\mathcal H$ be a class of subsets of *I* (all different from Ø and *I*). One first selects a collection $\{Q_H : H \in \mathcal{H}\}\$ of *putative* conditional distributions, and then looks for some $P \in \mathcal{P}$ inducing the Q_H as conditional distributions, in the sense that

 $Q_H = P_H$, a.s. with respect to *P*, for all $H \in \mathcal{H}$. (1)

But such a *P* can fail to exist. Accordingly, a set { Q_H : $H \in \mathcal{H}$ } of putative conditional distributions is said to be *compatible*, or *consistent*, if there exists $P \in \mathcal{P}$ satisfying condition [\(1\).](#page-0-4) (See Section [2](#page--1-0) for formal definitions.)

Corresponding author. *E-mail addresses:* patrizia.berti@unimore.it (P. Berti), dreassi@disia.unifi.it (E. Dreassi), pietro.rigo@unipv.it (P. Rigo).

⁰⁰⁴⁷⁻²⁵⁹X/\$ – see front matter © 2014 Elsevier Inc. All rights reserved. <http://dx.doi.org/10.1016/j.jmva.2013.12.009>

An obvious version of the previous definition is the following. Fix $\mathcal{P}_0 \subset \mathcal{P}$. For instance, \mathcal{P}_0 could be the set of those *P* ∈ P which make *X* exchangeable, or else which are absolutely continuous with respect to some reference measure. A natural question is whether there is $P \in \mathcal{P}_0$ with given conditional distributions $\{Q_H : H \in \mathcal{H}\}\)$. Thus, a set $\{Q_H : H \in \mathcal{H}\}$ of putative conditional distributions is \mathcal{P}_0 -*compatible* if condition [\(1\)](#page-0-4) holds for some $P \in \mathcal{P}_0$.

To better frame the problem, we next give three examples where compatibility issues arise.

Example 1 (*Gibbs Measures*). Think of *I* as a lattice and of X_i as the spin at site $i \in I$. The equilibrium distribution of a finite system of statistical physics is generally believed to be the Boltzmann–Gibbs distribution. Thus, when *I* is finite, one can let

$$
P(dx) = a \exp \left\{-b \sum_{H \subset I} U_H(x)\right\} \lambda(dx)
$$

where *a*, $b > 0$ are constants and λ is a suitable reference measure. Roughly speaking, $U_H(x)$ quantifies the energy contribution of the subsystem $(X_i : i \in H)$ at point x. This simple scheme breaks down when *I* is countably infinite. However, for each finite $H \subset I$, the Boltzmann–Gibbs distribution can still be attached to $(X_i : i \in H)$ conditionally on $(X_i : i \in I \setminus H)$. If Q_H denotes such Boltzmann–Gibbs distribution, we thus obtain a family {*Q^H* : *H* finite} of putative conditional distributions. But a law $P \in \mathcal{P}$ having the Q_H as conditional distributions can fail to exist. So, it is crucial to decide whether $\{Q_H : H$ finite} is compatible. See [\[10\]](#page--1-1).

Example 2 (Gibbs Sampling, Multiple Imputation, Markov Random Fields), Let $I = \{1, \ldots, k\}$ and $H_i = \{i\}$. For the Gibbs sampler to apply, one needs

$$
P_{H_i}(\cdot) = P(X_i \in \cdot \mid X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_k)
$$

for all $i \in I$. Usually, the P_{H_i} are obtained from a given $P \in \mathcal{P}$. But sometimes P is not assessed. Rather, one selects a collection ${Q_{H_i} : i \in I}$ of putative conditional distributions and use Q_{H_i} in the place of P_{H_i} . Formally, this procedure makes sense only if $\{Q_{H_i}: i \in I\}$ is compatible. Essentially the same situation occurs in missing data imputation and spatial data modeling. Again, *P* is not explicitly assessed and $X = (X_1, \ldots, X_k)$ is modeled by some collection $\{Q_{H_i} : i \in I\}$ of putative conditional distributions. As a (remarkable) particular case, in Markov random fields, each Q_{H_i} depends only on $(X_j : j \in N_i)$, where N_i denotes the set of neighbors of *i*. See [\[5,](#page--1-2)[6](#page--1-3)[,11,](#page--1-4)[13](#page--1-5)[,16,](#page--1-6)[15\]](#page--1-7) and references therein.

We point out that Gibbs sampling, multiple imputation and spatial data modeling are different statistical issues, but they share the structure of the putative conditional distributions $\{Q_{H_i}: i \in I\}$. From the point of view of compatibility, hence, they can be unified.

Example 3 (Bayesian Inference). Let $X = (X_1, \ldots, X_n, \ldots, X_m)$. Think of $Y = (X_1, \ldots, X_n)$ as the data and of $\Theta = (X_{n+1}, \ldots, X_n)$ *Xm*) as a random parameter. As usual, a *prior* is a marginal distribution for Θ, a *statistical model* a conditional distribution for *Y* given Θ, and a *posterior* a conditional distribution for Θ given *Y*. The statistical model, say *Q^Y* , is supposed to be assigned. Then, the standard Bayes scheme is to select a prior μ , to obtain the joint distribution of (Y, Θ) , and to calculate (or to approximate) the posterior. To assess μ is typically very arduous. Sometimes, it may be convenient to avoid the choice of μ and to assign directly a putative conditional distribution Q_{Θ} , to be viewed as the posterior.

The alternative Bayes scheme sketched above is not unusual. Suppose Q_Θ is the formal posterior of an improper prior, or it is obtained by some empirical Bayes method, or else it is a fiducial distribution. In all these cases, Q_{Θ} is assessed without explicitly selecting any (proper) prior. Such a *Q*_Θ may look reasonable or not (there are indeed different opinions). But a basic question is whether Q_{Θ} is the actual posterior of Q_Y and some (proper) prior μ , or equivalently, whether Q_Y and Q_{Θ} are compatible.

Compatibility results, if usable, have significant practical implications. In fact, in frameworks such as [Examples 1](#page-1-0) and [2](#page-1-1) [\(Example 3](#page-1-2) is a little more problematic), the statistical procedures based on $\{Q_H : H \in \mathcal{H}\}\)$ request compatibility. If ${Q_H : H \in \mathcal{H}}$ fails to be compatible, such procedures are questionable, or perhaps they do not make sense at all. In any case, a preliminary test of compatibility is fundamental.

[Example 1](#page-1-0) has been largely investigated (see e.g. [\[10\]](#page--1-1)) while [Example 3](#page-1-2) reduces to [Example 2](#page-1-1) with $k = 2$ by taking X_1 and *X*² as random vectors of suitable dimensions. Thus, in this paper, we focus on the framework of [Example 2.](#page-1-1)

In the sequel, we let

$$
I = \{1, ..., k\}
$$
 and $X = (X_1, ..., X_k)$

for some $k > 2$. We also let $H_i = \{i\}$ and we write

$$
Q_i = Q_{\{i\}} \quad \text{for } i = 1, \ldots, k.
$$

 Λ ccordingly, Q_i is to be regarded as the (putative) conditional distribution of X_i given $(X_1,\ldots,X_{i-1},X_{i+1},\ldots,X_k)$.

Three different types of compatibility results are provided. Most of them hold for arbitrary *k*, even if they take a nicer form for small *k*.

In Section [3,](#page--1-8) each *Xⁱ* (or each *Xⁱ* but one) takes values in a compact subset of the real line. Then, necessary and sufficient conditions for compatibility are obtained as a consequence of a general result in [\[3\]](#page--1-9).

Download English Version:

<https://daneshyari.com/en/article/1145977>

Download Persian Version:

<https://daneshyari.com/article/1145977>

[Daneshyari.com](https://daneshyari.com)