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a b s t r a c t

This paper introduces new classes of bivariate time series models being useful to fit
count data time series with a finite range of counts. Motivation comes mainly from
the comparison of schemes for monitoring tourism demand, stock data, production and
environmental processes. All models are based on the bivariate binomial distribution of
Type II. First, a new family of bivariate integer-valued GARCH models is proposed. Then, a
new bivariate thinning operation is introduced and explained in detail. The new thinning
operation has a number of advantages including the fact that marginally it behaves as
the usual binomial thinning operation and also that allows for both positive and negative
cross-correlations. Based upon this new thinning operation, a bivariate extension of the
binomial autoregressivemodel of order one is introduced. Basic probabilistic and statistical
properties of the model are discussed. Parameter estimation and forecasting are also
covered. The performance of these models is illustrated through an empirical application
to a set of rainy days time series collected from 2000 up to 2010 in the German cities of
Bremen and Cuxhaven.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Time series of (low) counts play an important role in the analysis of data sets ranging from economy and finance [20,9,13]
to medicine [27,34,3,1] and biology [45]. It is worth to mention that a large part of the literature on this topic is devoted
to the analysis of time series having an infinite range of counts. In particular, INteger-valued AutoRegressive-type (INAR)
models based on the binomial thinning operation of Steutel and van Harn [36], defined as α ◦ X := Y1 + · · · + YX if X > 0,
and 0 otherwise, where the Yi’s are independent and identically distributed (i.i.d.) Bernoulli random variables with success
probability α ∈ (0; 1), play a central role. For example, the INAR model of order one [26] is defined by the recursion

Xt = α ◦ Xt−1 + εt ≡

Xt−1
i=1

Yt,i + εt , t ∈ Z = {. . . ,−1, 0, 1, . . .}, (1)

where (εt) is an i.i.d. process with range N0 = {0, 1, . . .}, and where all thinning operations are performed independently
of each other and of (εt). Furthermore, the thinning operations at each time t and εt are independent of (Xs)s<t . Note that
the thinning operation ensures the integer discreteness of the process. More general INAR processes of order p > 1 were
introduced by Alzaid and Al-Osh [2].
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A different approach to handle time series of counts is to consider Generalized AutoRegressive Conditional Heteroscedas-
tic (GARCH) models, where the autoregressive structure is incorporated via a link function. A commonly used model is the
INteger-valued GARCH (INGARCH) process of order (p, q) of Heinen [17], defined as

Xt |Ft−1 : P(λt); ∀t ∈ Z

λt = α0 +

p
i=1

αiXt−i +

q
j=1

βjλt−j,
(2)

where Ft−1 := σ(Xs, s ≤ t − 1), α0 > 0, αi ≥ 0, and βj > 0. Ferland et al. [12] showed that (Xt) is strictly stationary with
finite first- and second-order moments provided that

p
i=1 αi +

q
j=1 βj < 1. Weiß [39] derived the variance and autocor-

relation function for the INGARCH models with p, q > 1. Further properties have been obtained by Zhu and Wang [47,46].
The particular case p = q = 1 was analyzed by Fokianos and Tjøstheim [14] and Fokianos et al. [13] under the designation
of Poisson Autoregression. We refer the reader to the survey of Tjøstheim [37] and the references therein for further details.

In contrast, however, the analysis of integer-valued time series with a finite range of counts has not received much
attention in the literature. The origins of the use of models based on thinning operations applied to time series with a finite
range of counts, say {0, 1, . . . , n}, can be traced back to McKenzie [26] who gave a remarkable contribution by suggesting
to replace the INAR(1) recursion in (1) by

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1), t ∈ Z (3)

with α = β + ρ, β = π(1 − ρ) for π ∈ (0; 1) and ρ ∈ [max(−π/(1 − π),−(1 − π)/π); 1], where all thinnings
are performed independently of each other, and being the thinnings at time t independent of (Xs)s<t . Note that the
representation for Xt in (3) guarantees that the range of Xt is given by {0, 1, . . . , n}. Furthermore, the condition on ρ
guarantees that α, β ∈ (0; 1). The process in (3) used to be referred to as binomial AR(1) process and is a stationary Markov
chainwith n+1 states and binomialmarginal distribution Bi(n, π). The binomial AR(1) process shares some properties with
the conventional AR(1) process, namely ρ(k) := ρ(Xt , Xt−k) = ρk, where ρ(Y , Z) abbreviates the correlation between Y
and Z . Other important features of the binomial AR(1) process are that both the conditional mean and variance of Xt given
Xt−1 are linear in Xt−1, and the fact that is time-reversible. For further properties see [41,43,11,40]. For binomial AR(p)
processes with order p > 1 see [38]. Further enhancements of the basic binomial AR(1) model are proposed by Weiß and
Kim [42] and Weiß and Pollett [44].

The literature on bivariate (and also multivariate) time series with finite or infinite range of counts is still in its infancy.
There have been only few attempts to model bivariate/multivariate time series of counts via multivariate INGARCHmodels.
A notable exception is the work of Heinen and Rengifo [18] who introduced the multivariate autoregressive conditional
double Poisson model generalizing previous results by Heinen [17] for the univariate case. Another generalization being
based on the bivariate Poisson distribution is considered by Liu [24]. Also multivariate models based upon thinning ideas
have received little attention in the literature. An important contribution was made by Franke and Rao [15] who introduced
the multivariate integer-valued autoregressive (MINAR, in short) model of order one based upon independent binomial
thinning operations. Extensions of MINAR models with order p > 1 were introduced in [23] in which matrices operate on
vectors using the generalized thinning operation. More recently, Pedeli and Karlis [29] introduced the bivariate INARmodel
of order one with Poisson and negative binomial innovations. The authors illustrated the performance of the model through
an empirical application to the joint modeling of the number of daytime and nighttime road accidents in the Netherlands
for the year 2001. It is important to refer that in Pedeli and Karlis’ model the autoregressionmatrix is diagonal whichmeans
that it causes no cross-correlation in the counts; see also [30,31] for further details. The bivariate INARmodel considered by
Boudreault and Charpentier [7], in contrast, is the one of Franke and Rao [15], and therefore accounts for cross-correlation
in the counts. An important limitation of Pedeli and Karlis’ model and also Boudreault and Charpentier’s model is that they
only allow for positive correlations between the two time series. In order to also account for negative correlation between
the time series, Karlis and Pedeli [21] introduced a family of bivariate INAR(1) processes where negative cross-correlation is
introduced through the innovations, by defining the distribution of the innovations in terms of appropriate bivariate copulas.
Extensions for bivariate INAR(1)models with positively correlated geometricmarginals can be found in [33]. Bivariate INMA
models based on the binomial thinning operation and contemporaneous only cross-correlation in the counts was proposed
by Quoreshi [32] who reports an application to the number of transactions in intra-day data of stocks.

Applied to the bivariate case with X := [X1 X2]
′, the thinning concept of Franke and Rao [15] and Boudreault and

Charpentier [7] leads to the operation

A ◦ X =


a11 ◦ X1 + a12 ◦ X2
a21 ◦ X1 + a22 ◦ X2


with A ∈ [0; 1]2×2, (4)

where the thinnings are performed independently of each other. Karlis and Pedeli [21] and Pedeli and Karlis [30,31,29]
restrict to the case where a12 = a21 = 0 such that (A ◦ X)i has the same distribution as aii ◦ Xi, i.e., the marginals behave
like the univariate thinning operation. However, this nice feature is obtained at the cost of no additional cross-correlation
between (A ◦ X)1 and (A ◦ X)2, in the sense that

Cov

(A ◦ X)1, (A ◦ X)2


= Cov


E(a11 ◦ X1 | X), E(a22 ◦ X2 | X)


= a11a22 · Cov(X1, X2). (5)
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