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a b s t r a c t

This paper is concerned with the role some parameters indexing four important
families within the multivariate elliptically contoured distributions play as indicators of
multivariate kurtosis. The problem is addressed for the exponential power family, for a
subclass of the Kotz family and for the Pearson type II and type VII distributions. Once such
a problem is analyzed, we study the effect these parameters have, as kurtosis indicators,
on binary discriminant analysis by exploring their relationship with the error rate of the
Bayes discriminant rule. The effect is analyzed undermild conditions on the kernel function
generating the elliptical density. Some numerical examples are given in order to illustrate
our theoretical insights and findings.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The word kurtosis comes from the Greek κυρτ óς which means bulging. The statistical concept behind it is concerned
with the curvature, the amount of peakedness and tailweight of a distribution; it dates back to the renowned Karl
Pearson [15] who defined it as a measure of departure from normality and introduced the terms leptokurtic,mesokurtic and
platikurtic to classify distributions accordingly. Since then different alternatives to describe this concept have been proposed
both for univariate and multivariate distributions; see [13,1,8,16,10] and [11,14,20] respectively, to name but a few.

Rather than using a single statistical quantity to account for kurtosis, Van Zwet [17] described it by means of a partial
stochastic order between distribution functions. A kurtosis ordering ≤s between two symmetric random variables X and Y ,
with distribution functions FX and GY , was defined in the following way: FX is said to be less or equal than GY in kurtosis,
FX ≤s GY , if and only if G−1

Y (FX (x)) is convex for x > µ, where µ is the point of symmetry of FX .
Therefore, in order that any statistical quantity can be considered a kurtosis indicator, it should retain such ordering. Van

Zwet’s definition, initially established for symmetric univariate distributions, has been adapted to the non symmetric case
in [2]. Recently, Wang [19] extended it to the case of multivariate elliptically contoured distributions.

In this paper we explore the link between the multivariate kurtosis ordering as given in [19] and the binary discriminant
analysis under elliptically contoured distributions. Themain results are established for four important elliptical families: two
subclasses of the Kotz family, the Pearson type II distributions and themultivariate t which is a subfamily of the Pearson type
VII distributions. Thework is organized as follows: the next section reviews several topics on elliptical distributions that will
be used along the paper. In Section 3 we describe and extend the results in [19], putting the focus on the aforementioned
families. Section 4 introduces the discriminant analysis in elliptical populations and studies the connection between kurtosis

∗ Corresponding author.
E-mail addresses: jmartin@ccia.uned.es (J.M. Arevalillo), hnavarro@ccia.uned.es (H. Navarro).

0047-259X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2012.01.011

http://dx.doi.org/10.1016/j.jmva.2012.01.011
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
mailto:jmartin@ccia.uned.es
mailto:hnavarro@ccia.uned.es
http://dx.doi.org/10.1016/j.jmva.2012.01.011


54 J.M. Arevalillo, H. Navarro / Journal of Multivariate Analysis 107 (2012) 53–63

and the error of the Bayes discriminant rule when the kernel function generating the elliptical density is non increasing;
the theoretical discussion is illustrated with some numerical examples that will shed light on our findings. Finally, we will
summarize our advances and will establish some concluding remarks.

2. Background on elliptically contoured distributions

Elliptically contoured distributions are useful tools formodelingmultivariate data since they provide an alternativewhen
the normality assumption fails; some survey works that treat them from a theoretical viewpoint are [3,5,4,7]. This section
reviews some properties concerned with the stochastic representation of the elliptical distributions; the properties will be
stated for the aforementioned subfamilies within the class of the elliptically contoured distributions.

Definition 1. Let X = (X1, . . . , Xp)
′ be an absolutely continuous distributed random vector. We say that X follows an

elliptically contoured distribution if its density function is given by

f (x; µ, 3, g) = Cp|3|
−1/2g((x − µ)′3−1(x − µ)), (1)

where µ ∈ Rp, 3 is a p × p positive definite matrix, Cp =
0(

p
2 )

π
p
2


∞

0 t
p
2 −1g(t)dt

and g is a non negative real valued function such

that


∞

0 t
p
2 −1g(t)dt < ∞.

We will write X ∼ ECp(µ, 3, g) to denote that X is distributed in accordance to a p-dimensional elliptically contoured
distribution.

An interesting property of the elliptically contoured distribution is concerned with its stochastic representation which
can be derived from Theorems 2.5.3 and 2.5.5 in [5]. The property is stated as follows.

Proposition 1. A vector X satisfies X ∼ ECp(µ, 3, g) if and only if

X d
= µ + A′RU (p), (2)

where A is a square matrix such that A′A = 3,U (p) is a p-dimensional vector with uniform distribution on the unit hypersphere
and R is an absolutely continuous non negative random variable, independent of U (p), such that R2 has density function

hR2(r) =
1

∞

0 t
p
2 −1g(t)dt

rp/2−1g(r), r ≥ 0. (3)

The variable R in (2) is known as the modular variable since it has the same distribution as the modulus of A′−1(X − µ).
On the other hand, there is a close connection between the scale matrix 3 in (1) and the regular covariance matrix 6 of the
elliptical distribution. From Theorem 2.6.4 in [5] it follows that 6 =

E(R2)
p 3, provided that E(R2) < ∞. Note that for the

multivariate normal distribution, where the generating function is g(t) = e−t/2, we obtain E(R2) = p and 6 = 3.
Proposition 2 states a result which stems from the distribution of an affine transformation of a vector X having an

elliptically contoured distribution. The proposition will be utilized in Section 4, where the connection between kurtosis
and discriminant analysis will be analyzed.

Proposition 2. Let X ∼ ECp(µ, 3, g) with stochastic representation X d
= µ + A′RU (p). The marginal distribution of the

component X1 of X is elliptical with stochastic representation X1
d
= µ1 + a11R1U (1), where U (1) is a Bernoulli random variable in

{−1, 1} independent of R1, and R1
d
= R

√
B with B a Beta
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
variable independent of R. In addition, the modular variable

R1 has a density function given by
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20
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, r ≥ 0. (4)

Proof. The statement follows as a particular case of part 2 of Theorem 5 in [7] or by a direct application of Theorems 2.6.1
and 2.6.2 in [5]. �

Now, we review the results given by Propositions 1 and 2 when they are applied to the Kotz, Pearson type II and Pearson
type VII families.
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