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a b s t r a c t

Motivated by analysis of gene expression data measured over different tissues or over
time, we consider matrix-valued random variable and matrix-normal distribution, where
the precision matrices have a graphical interpretation for genes and tissues, respectively.
We present a l1 penalized likelihood method and an efficient coordinate descent-based
computational algorithm for model selection and estimation in such matrix normal
graphicalmodels (MNGMs).Weprovide theoretical results on the asymptotic distributions,
the rates of convergence of the estimates and the sparsistency, allowing both the numbers
of genes and tissues to diverge as the sample size goes to infinity. Simulation results
demonstrate that the MNGMs can lead to a better estimate of the precision matrices and
better identifications of the graph structures than the standard Gaussian graphical models.
We illustrate the methods with an analysis of mouse gene expression data measured over
ten different tissues.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Gaussian graphicalmodels (GGMs) provide natural tools formodeling the conditional independence relationships among
a set of random variables [23,37]. Many methods of estimating the standard GGMs have been developed in recent years,
especially in high-dimensional settings. Meinshausen and Bühlmann [27] took a neighborhood selection approach to this
problem by fitting a l1 penalized regression or Lasso [33] to each variable using the other variables as predictors. They
show that this neighborhood selection procedure consistently estimates the set of non-zero elements of the precision
matrix. Other authors have proposed algorithms for the exact maximization of the l1-penalized log-likelihood. Yuan and
Lin [39], Banerjee et al. [4] and Dahl et al. [9] adapted an interior point optimizationmethod for the solution to this problem.
Based on the work of Banerjee et al. [4] and a block-wise coordinate descent algorithm, Friedman et al. [16] developed
the graphical Lasso (glasso) for sparse inverse covariance estimation, which is computationally very efficient even when
the dimension is greater than the sample size. Yuan [38] developed a linear programming procedure for high dimensional
inverse covariance matrix estimation and obtained oracle inequalities for the estimation error in terms of several matrix
norms. Some theoretical properties of this type of methods have also been developed by Yuan and Lin [39], Ravikumar
et al. [30], Rothman et al. [31] and Lam and Fan [22]. Cai et al. [6] developed a constrained l1 minimization approach to
sparse precision matrix estimation, extending the idea of the Dantzig selector [7] developed for sparse high dimensional
regressions.

The standard likelihood framework for building Gaussian graphical models assumes that samples are independent and
identically distributed from a multivariate Gaussian distribution. This assumption is often limited in certain applications.
For example, in genomics, gene expression data of p genes collected over q different tissues from the same subject are
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often correlated. For a given sample, let Y be the p × q matrix of the expression data, where the jth column corresponds
to the expression data of p genes measured in the jth tissue, and the ith row corresponds to gene expressions of the ith
gene over q different tissues. Instead of assuming that the columns or rows are independent, we assume that the matrix
variate random variable Y follows a matrix normal distribution [10,23,18], where both row and column precision matrices
can be specified. The matrix-variate normal distribution has been studied in analysis of multivariate linear model under
the assumption of independence and homoscedasticity for the structure of the among-row and among-column covariance
matrices of the observation matrix [15,34]. Such a model has also be applied to spatio-temporal data [26,21]. In genomics,
Teng and Huang [32] proposed to use the Kronecker product matrix to model gene-experiment interactions, which leads
to a gene expression matrix following a matrix-normal distribution. The gene expression matrix measured over multiple
tissues is transposable, meaning that potentially both the rows and/or columns are correlated. Such matrix-valued normal
distribution was also used in [2,12] for modeling gene expression data in order to account for gene expression dependency
across different experiments. Dutilleul [11] developed the maximum likelihood estimation (MLE) algorithm for the matrix
normal distribution.Mitchell et al. [28] developed a likelihood ratio test for separability of the covariances.Muralidharan [29]
used a matrix normal framework for detecting column dependence when rows are correlated and estimating the strength
of the row correlation.

The precision matrices of the matrix normal distribution provide the conditional independence structures of the row
and column variables [23], where the non-zero off-diagonal elements of the precision matrices correspond to conditional
dependencies among the elements in row or column of the matrix normal distribution. The matrix normal models with
specified non-zero elements of the precision matrices define the matrix normal graphical models (MNGMs). This is
analogous to the relationship between the Gaussian graphical model and the precision matrix of a multivariate normal
distribution. Despite the flexibility of the matrix normal distribution and the MNGMs in modeling the transposable data,
methods for model selection and estimation of such models have not been developed fully, especially in high dimensional
settings. Wang and West [36] developed a Bayesian approach for the MNGMs using Markov Chain Monte Carlo sampling
scheme that employs an efficient method for simulating hyper-inverse Wishart variates for both decomposable and
nondecomposable graphs. Allen and Tibshirani [2,3] proposed penalized likelihood approaches for such matrix normal
models, where both l1-norm and l2-norm penalty functions are used on the precision matrices.

The focus of this paper is to develop a model selection and estimation method for the MNGMs based on a l1 penalized
likelihood approach under the assumption of both row and column precision matrices being sparse. Our penalized
estimationmethod is the same as that proposed in [2,1,3] when l1 penalty is used. Allen and Tibshirani [2,3] only considered
the settingwhen there is one observedmatrix-variate normal data and used the estimated covariancematrices for imputing
themissing data and for de-correlating the noise in the underlying data.We focus on evaluating howwell such a l1 penalized
estimation method recovers the underlying graphical structures that correspond to the row and column precision matrices
when we have n i.i.d. samples from a matrix normal distribution. In addition, we provide asymptotic justification of the
estimates and show that the estimates enjoy similar asymptotic and oracle properties as the penalized estimates for the
standard GGMs [13,22,39] even when the dimensions p = pn and q = qn diverge as the number of observations n → ∞.
In addition, if consistent estimates of the precision matrices are available and are used in the adaptive l1 penalty functions,
the resulting estimates have the property of sparsistency.

The rest of the paper is organized as follows. We introduce the MNGMs as motivated by analysis of gene expression
data across multiple tissues in Section 2. In Section 3 we present a l1 penalized likelihood estimate of such a MNGM and
an iterative coordinate descent procedure for the optimization. We present the asymptotic properties of the estimates in
Section 4 in both the classic setting when the dimensions are fixed and the setting allowing the dimensions to diverge as the
sample size goes to infinity. In Section 5wepresent simulation results and comparisonswith the standardGaussian graphical
model. We present an application of the MNGM in Section 6 to an analysis of mouse gene expression data measured over
10 different tissues. Finally, in Section 7 we give a brief discussion. The proofs of all the theorems are given in the Appendix.

2. Matrix normal graphical model for multi-tissue gene expression data

We consider the gene expression data measured over different tissues. Let Y be the random p × q matrix of the gene
expression levels of p genes over q tissues. Let vec(A) be the vectorization of a matrix A obtained by stacking the columns
of the matrix A on top of one another. Instead of assuming that the expression levels are independent over different tissues,
following [32], we can model this gene expression matrix as

Y = G + T + IGT + ϵ, (1)
where G and T are expected (constant) effects from the genes and tissues respectively, IGT are the interaction effects that are
assumed to be randomwith vec(IGT ) following a multivariate normal distribution with zero means and a covariance matrix
V ⊗ U, where the covariance matrices U and V respectively represent the gene and tissue dependencies, and ϵ represents
small random normal noises with zero means arising from all nuisance sources. With negligible nuisance effects, vec(Y)
follows a multivariate normal distribution with means vec(M) = vec(G + T) and a covariance matrix V ⊗ U [32].

Treating the data Y as a matrix-valued random variable, we say Y follows a matrix normal distribution, if Y has a density
function

p(Y|M,U,V) = k(U,V) exp(−tr{(Y − M)TU−1(Y − M)V−1/2}), (2)
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