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a b s t r a c t

It has been commonly admitted that the meaning of a descriptive feature of distributions
is given by an ordering and that the measures for this feature are meaningful only if they
preserve the ordering. However, while many multivariate kurtosis measures have been
introduced, multivariate kurtosis orderings have received relatively little investigation.
In this paper, we propose and study a generalized multivariate kurtosis ordering. Under
some conditions, this ordering is affine invariant and determines elliptically symmetric
distributions within affine equivalence. Some special cases of the generalized ordering
provide the kurtosis orderings for various existing multivariate kurtosis measures. Those
kurtosis orderings are applied to explore the relationships of the multivariate kurtosis
measures. Some other applications of the generalized multivariate kurtosis ordering are
also given.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Unlike location, spread and skewness, the meaning of kurtosis is a topic of considerable debate. Even with regard to the
basic question of what kurtosis measures, there is no universal agreement up to now. Thus various multivariate kurtosis
measures have been proposed.

The classical notion of univariate kurtosis is moment-based and given by the standardized fourth central moment
β1(F) = E(X − µ)4/σ 4, where F is the distribution function of X . As a measure of a key descriptive feature of univariate
distributions, β1(F) has broad applications, for example, test for univariate normality, detection of univariate outliers, risk
analysis (kurtosis risk), image sharpness, and so on. A natural multivariate extension of β1(F) was given by Mardia [9] as
the fourth moment of the Mahalanobis distance of a random vector X in Rd from its mean µ, i.e.,

βd(F) = E[(X − µ)′Σ−1(X − µ)]2.

Srivastava [14] generalized β1(F) to β∗

d (F), defined as the average of kurtosis values of the principal components for the
multivariate case. Since principal components are related to direction, β∗

d (F) is not affine invariant. Utilizing simplicial
volume, Oja [10] proposed another multivariate extension of β1(F). Besides those moment-based multivariate kurtosis
measures, various nonparametric multivariate kurtosis measures have also been proposed.

Treating kurtosis and tailweight as the same notion, Liu et al. [6] introduced a depth-basedmultivariate kurtosismeasure,
a ‘‘fan plot’’, exhibiting several curves of

bF (t|p0) =
VF (tp0)
VF (p0)

, 0 ≤ t ≤ 1,
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for selected choices of p0, where VF (p) denotes the depth-based volume functional (see Section 2 for details). They also
introduced other forms of depth-basedmultivariate kurtosis measures, i.e., a Lorenz curve, and a ‘‘shrinkage plot’’. A general
depth-based Lorenz curve was discussed by Serfling [11]. Extending the Groeneveld and Meeden [4] kurtosis measure for
univariate symmetric distributions, Wang and Serfling [18] introduced a nonparametric multivariate kurtosis functional:
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Other multivariate kurtosis measures can be found in Malkovich and Afifi [8], Averous and Meste [1], and Serfling [12].
It can be seen that the above multivariate kurtosis measures are quite different and, of course, for a distribution F in Rd

they give quite different kurtosis values in general. Here the questions of interest are the following.
(1) Is there any relationship among those multivariate kurtosis measures? Especially are they consistent (that is, for two
distributions F and G in Rd, if the kurtosis of G is higher than the one of F according to a kurtosis measure, does the same
kurtosis relationship hold according to another kurtosis measure)?
(2) For the ‘‘fan plot’’, is it necessary to use different choices of p0?
(3) For the nonparametric multivariate kurtosis functional kF (p), can we use the value of kF (p) at a single point p instead of
the whole curve?
Such questions motivate this work. To answer those questions, we study multivariate kurtosis by the ordering approach. A
generalizedmultivariate kurtosis ordering is proposed and studied in Section 2. Section 3 focuses on some special cases of the
ordering, which provide the kurtosis orderings for various existingmultivariate kurtosis measures. Those kurtosis orderings
are applied to explore the relationships of various multivariate kurtosis measures in Section 4. Section 5 is devoted to some
other applications of the generalized multivariate kurtosis ordering.

Throughout this paper, we confine attention to continuous distributions.We use uppercase letters to denote distribution
functions and their lowercase counterparts to denote density functions. For example, we denote by FX and fX the cdf and
density of a random vector X in Rd. When X is a random variable, the quantile function of X is denoted by F−1

X . Without
confusion, we will omit the subscript.

2. A generalized multivariate kurtosis ordering

Extending the van Zwet [16] kurtosis ordering for univariate symmetric distributions, Balanda and MacGillivray [2]
proposed a univariate kurtosis ordering, which involves the case of univariate asymmetric distributions: F 6s G if and only
if (iff) SG(S−1

F (r)) is convex for r ≥ 0, equivalently, SF (p)≤c SG(p), where ≤c is the van Zwet [16] skewness ordering for
univariate distributions, SF (p) and SG(p) are the spread functions of F and G, respectively, i.e.,
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Here comes out a general approach to develop a multivariate kurtosis ordering. Given a spread functional of distributions
in Rd, a univariate skewness ordering on the spread functions will yield a kurtosis ordering for the underlying distributions.
See Averous andMeste [1] andWang [17] for detailed discussion. In this section, we will develop a generalized multivariate
kurtosis ordering by a generalized depth-based spread functional.

2.1. Definition

In recent years, statistical depth functions are playing an increasingly important role in nonparametric multivariate
analysis. Generally, a depth function DF (x) is a nonnegative real-valued mapping which provides a distribution-based
center-outward ordering of points x in Rd. Given a depth function, the center of the distribution is defined as the point of
maximal depth, amultidimensionalmedian, and in typical cases it agreeswith the center as defined by a notion of symmetry.
Desirable properties for a depth function are: (1) affine invariance (DFAX+b(Ax+b) = DFX (x) for any nonsingular d×dmatrix
A and d-vector b); (2) maximality at ‘‘center’’; (3) monotonicity relative to the deepest point; (4) vanishing at infinity. The
following are some widely used depth functions.
The Mahalanobis depth. The Mahalanobis depth is defined by the Mahalanobis [7] distance as

MDF (x) =

1 + (x − µF )

′Σ−1
F (x − µF )

−1
, x ∈ Rd,

where µF and ΣF are the mean vector and covariance matrix of F , respectively.
The halfspace depth. Tukey [15] introduced the halfspace depth,

HDF (x) = inf {P(H) : x ∈ H ∈ H} , x ∈ Rd,

where H = {all closed halfspaces}.
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