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a b s t r a c t

Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension
reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as
the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based
on quadratic inference functions are difficult to be extended to second-order sufficient
dimension reduction methods such as the sliced average variance estimation (Cook and
Weisberg (1991) [9]). In this article,wedevelop twonewmodel-free tests of the conditional
predictor hypothesis. Moreover, our proposed test statistics can be adapted to commonly
used sufficient dimension reduction methods of eigendecomposition type. We derive the
asymptotic null distributions of the two test statistics and conduct simulation studies to
examine the performances of the tests.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

For parametric regressions, hypothesis testing for predictor contributions to the response is a well developed research
area. For instance, in the linear models, t test is often applied to check the contribution of every predictor. However, for
semiparametric models, this topic has not yet received enough attention because how to construct a test therein is a
challenge. To attack this problem, Cook [4] investigated this issue in a dimension reduction framework.

For a typical regression problem with a univariate random response Y and a vector of random predictors X =

(X1, . . . , Xp)
T

∈ Rp, the goal is to understand how the conditional distribution Y |X depends on the value of X. The spirit
of sufficient dimension reduction [14,3] is to reduce the dimension of X without loss of information on the regression
and without requiring a pre-specified parametric model. Assuming the following semiparametric regression model: Y =

g(βT
1X, βT

2X, . . . ,βT
dX, ϵ), where g(·) is an unknown function and ϵ is an unknown random error independent of X, we

can see that the conditional distribution of Y |(βT
1X, . . . ,βT

dX) is the same as that of Y |X for all values of X. Hence, these
β’s provide a parsimonious characterization of the conditional distribution of Y |X. We call them the effective (sufficient)
directions [14,3]. When d is small which is often the case in real applications, the original regression problem (data) can be
effectively reduced by projecting X along these effective directions.

More formally, we search for subspaces S ⊆ Rp such that YyX|PSX where y indicates independence, and P(·) stands
for a projection operator with respect to the standard inner product. The intersection of all such S is defined as the central
subspace, denoted as SY |X [3], which almost always exists in practice under mild conditions [25]. We assume the existence
of the central subspaces throughout this article. Sufficient dimension reduction is concerned withmaking inferences for the
central subspace. d = dim(SY |X ) is called the structural dimensionof the regression. Unlike other nonparametric approaches,
sufficient dimension reduction can often avoid the curse of dimensionality. Many sufficient dimension reduction methods
enjoy

√
n convergence rates since they exploit the global features of the dependence of Y on X.
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Sufficient dimension reduction has been a promising field during the past decades. It has attracted considerable interests,
and many methods have been developed. Among them, sliced inverse regression (SIR; [14]), sliced average variance
estimation (SAVE; [9]), minimum average variance estimation [22], inverse regression estimation [7] and directional
regression (DR; [17]) are the most widely investigated methods in the literature. All these aforementioned methods except
Xia et al. [22] mainly focus on the estimation of the central subspace.

Other than estimating the central subspace, it is also of interest to evaluate the predictor effects in a model free setting.
Cook [4] considered two types of hypotheses to test the significance of subsets of predictors under the framework of
sufficient dimension reduction. The first type is the Marginal Coordinate Hypothesis: PHSY |X = Op versus PHSY |X ≠ Op.
The second type is called the Conditional Coordinate Hypothesis:

PHSY |X = Op versus PHSY |X ≠ Op given d; (1.1)

whereH is an r-dimensional (r ≤ p−d) user-selected subspace of the predictor space andOp indicates the origin in Rp. For
example, suppose thatXT

= (XT
1,X

T
2), whereX1 ∈ Rr andX2 ∈ Rp−r , andwewould like to test ifX1 makes any contributions

to the regression Y |X, we then consider these two types of hypotheses tests with H = Span((Ir , 0)T ). Although in general,
H need not correspond to a subset of predictors (coordinates).

Hence, both the marginal coordinate hypothesis and the conditional coordinate hypothesis can be used to test the
contributions of selected predictors without requiring a pre-specified model about the original regression Y |X. When d,
the structural dimension of the regression, is specified as a modeling device, or inferences on d result in a clear estimate,
a conditional coordinate hypothesis test will be the natural choice. Otherwise, a marginal coordinate hypothesis would be
tested. We would expect that the conditional coordinate hypothesis will provide us with greater power when a correct d is
given prior to testing predictors. On the other hand, when d is misspecified, a conditional coordinate hypothesis test might
lead tomisleading results, while themarginal coordinate hypothesis test should be considered. Although simulation studies
provided in Section 4 suggest that the misspecification of d need not be a worrisome issue in practice.

Based on a nonlinear least squares formulation of the sliced inverse regression estimation, Cook [4] constructed asymp-
totic tests for themarginal and conditional coordinate hypotheses. Cook andNi [7] showedhow to testmarginal (conditional)
coordinate hypotheses using various quadratic inference functions, which stimulated the tests of conditional independence
hypotheses based on the minimum discrepancy approach [7] and the covariance inverse regression estimation [8].

All the aforementioned tests are based on the first moment of the inverse regression of X|Y that are called the first-order
sufficient dimension reduction methods. Note that these tests for the predictor contributions might be invalid when the
response surface is symmetric about the origin since these first-order sufficient dimension reduction methods themselves
would fail in such cases. Therefore, it is of great interest to consider coordinate tests using the second-order sufficient di-
mension reductionmethodswhich involve both the first and secondmoments of the inverse regression ofX|Y . However, the
commonly used second-order sufficient dimension reduction methods such as the sliced average variance estimation [9],
and the directional regression [17], are very different from those first-ordermethodswhich could be derived from quadratic
inference functions. Hence, the asymptotic tests developed by Cook andNi [7] are not directly applicable. Shao et al. [21] pro-
vided amarginal coordinate test based on the sliced average variance estimation. But to the best of our knowledge, there are
nomethods available in the literature for testing of the conditional coordinate hypotheses of (1.1)with second-order dimen-
sion reduction methods. To address this issue, we in this article present two new tests of conditional coordinate hypotheses
which could be adapted to essentially all existing sufficient dimension reduction methods of the eigendecomposition type,
including both the sliced inverse regression estimation and the sliced average variance estimation methods.

The rest of the paper is organized as follows. Section 2 revisits several moment based sufficient dimension reduction
methods. In Section 3, we construct two new tests and present their asymptotic null distributions. Sections 4 and 5 are
concerned with simulation studies and a real data application. We conclude with a brief discussion in Section 6. For easy of
exposition, the proofs of the asymptotic results are deferred to the Appendix A.

2. Sufficient dimension reduction methods revisited

Let µ = E(X), 6 = Var(X), and Z = 6−1/2(X − µ) be the standardized predictor. Many moment based sufficient
dimension reduction methods can be formulated as the following eigendecomposition problem:

Mηi = λiηi, i = 1, . . . , p, (2.2)

where M is the Z scale method-specific candidate matrix. Under certain conditions imposed only on the marginal
distribution of the predictor, the eigenvectors (η1, . . . , ηd) corresponding to the nonzero eigenvalues λ1 ≥ · · · ≥ λd form
a basis of the Z scale central subspace SY |Z . Then by the invariance property SY |X = 6−1/2SY |Z as described by Cook [3],
β = (6−1/2η1, . . . , 6−1/2ηd) forms a basis of SY |X .

As most of commonly used sufficient dimension reduction methods that target SY |Z are of candidate matrices satisfying
the above eigendecomposition, we only list some as follows:

Sliced Inverse Regression: M = Var{E(Z|Y )};

Sliced Average Variance Estimation: M = E{Ip − Var(Z|Y )}2;

Directional Regression: M = 2E{E2(ZZT
|Y )} + 2E2

{E(Z|Y )E(ZT
|Y )} + 2E{E(ZT

|Y )E(Z|Y )}E{E(Z|Y )E(ZT
|Y )} − 2Ip.
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