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a b s t r a c t

In this paper we define a new nonlinear wavelet-based estimator of conditional density
function for a random left truncation and right censoringmodel.We provide an asymptotic
expression for the mean integrated squared error (MISE) of the estimator. It is assumed
that the lifetime observations form a stationary α-mixing sequence. Unlike for kernel
estimators, the MISE expression of the wavelet-based estimators is not affected by the
presence of discontinuities in the curves. Also, asymptotic normality of the estimator is
established.
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1. Introduction

In recent years, waveletmethods in nonparametric curve estimation have become awell-known and powerful technique.
We refer to the monograph by Härdle et al. [18] for a systematic discussion of wavelets and their applications in statistics.
The major advantage of the wavelet method is its adaptability (in the minimax sense) to the degree of smoothness of the
underlying unknown curve. These wavelet estimators typically achieve the optimal convergence rates over exceptionally
large function spaces. Formore information and related references, see the initialworks byKerkyacharian and Picard [20,21],
Donoho and Johnstone [6,7], and Donoho et al. [8,9]. Hall and Patil [17] gave for the first time an asymptotic expression of
the mean integrated squared error (MISE) of a nonlinear wavelet density estimator, and compared its performance to that
corresponding to the kernel density estimator. These authors showed that the asymptotic MISE formula is the same in both
the smooth and nonsmooth density cases, a fact that is not true for the kernel method.

In medical follow-up or in engineering life testing studies, one may not be able to observe the variable of interest,
referred to hereafter as the lifetime. Among the different forms in which incomplete data appear, right censoring and left-
truncation are two common ones. Some authors have studied wavelet density estimation with censored data. For example,
Antoniadis et al. [2] considered linearwavelet density estimation under randomcensoring, and provided an asymptoticMISE
convergence rate under smoothness assumptions on the underlying density function. Li [23] proposed a nonlinear wavelet
density estimator with censored data and derived a result similar to the main result, Theorem 2.1, of Hall and Patil [17], for
the MISE; see also [28] who considered the Koziol–Green model of random censorship. All of the above works are devoted
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to the independent setting. For the dependent case, Liang et al. [24] discussed the global L2 error of the nonlinear wavelet
estimators of the density function in the Besov space under censoring and stationary α-mixing assumptions; for complete
data, Truoug and Patil [30] gave an asymptotic expression of the MISE in nonlinear wavelet regression with α-mixing data.
However, the construction and asymptotic properties of the nonlinear wavelet estimator of the conditional density function
for the left truncated and right censored (LTRC) model are not available in the literature so far. Moreover, we are unaware
of any paper dealing with wavelet estimation of a conditional density in the simplest situation of i.i.d. complete data.

Let (Y , T ,W ) be a random vector, where Y is the lifetimewith distribution function (df) F , T is the random left truncation
time with the df L and W denotes the random right censoring time with the df G. In the random LTRC model one observes
(Z, T , δ) if Z ≥ T , where Z = min(Y ,W ) and δ = I(Y ≤ W ). When Z < T nothing is observed. Clearly, if Y is independent
of W , then Z has the df H = 1 − (1 − F)(1 − G). Take θ = P(T ≤ Z), then necessarily, we assume θ > 0. Let (Zi, Ti, δi),
for i = 1, 2, . . . , n, be a stationary random sample from (Z, T , δ) which one observes then (Ti ≤ Zi,∀i). The product-limit
estimator (PLE), Fn, of F is defined in [31] as follows:

1 − Fn(y) =

n∏
i=1


1 −

I(Zi ≤ y, δi = 1)
nCn(Zi)


, (1.1)

where Cn(y) = n−1∑n
i=1 I(Ti ≤ y ≤ Zi) is the empirical estimator of C(y) = P(T ≤ y ≤ Z |T ≤ Z). Under independent

and identically distributed (i.i.d.) assumptions, the properties of Fn have been studied byWang [34], Gu and Lai [15], Lai and
Ying [22], Gijbels and Wang [11], and Zhou [36], among others. Nonparametric estimates of the density and hazard rate for
F have been studied by Gijbels andWang [11], Sun and Zhou [29], Uzunoḡullari andWang [32], Gu [14] and Zhou et al. [37].

Let X be a Rd-valued random vector of covariates related with Y . Assume that X admits df M(·) and density m(·). Then
denote by (Xi, Zi, Ti, δi), i = 1, 2, . . . , n a stationary random sample from (X, Z, T , δ) which one observes (Ti ≤ Zi,∀i).
Without loss of generality, we assume that Y , T and W are nonnegative random variables, as usual in survival analysis.
Following the idea of Iglesias-Pérez and González-Manteiga [19], we define a generalized product-limit estimator, GPLE, of
the conditional survival function of Y given X = x for the LTRC data, given by

1 − F̂n(y|x) =

n∏
i=1

1 −
I(Zi ≤ y)δiBni(x)

n∑
j=1

I(Tj ≤ Zi ≤ Zj)Bnj(x)

 , (1.2)

where Bni(x) = K( x−Xi
hn
)/
∑n

j=1 K(
x−Xj
hn
), K denotes a kernel function on Rd, and 0 < hn → 0 is the bandwidth parameter.

Note that the GPLE reduces to the estimator for left truncated data when there is no right censoring (δ = 1, Z = Y ) (see [1]),
and to the estimator for right censored data when there is no left truncation (T = 0) (see [3,12]). On the other hand, in
the absence of covariates, the GPLE reduces to the PLE estimator defined by (1.1) when (Bni(x) = 1/n, ∀i). Under i.i.d.
assumptions and for the case of d = 1, Iglesias-Pérez and González-Manteiga [19] obtained an almost sure representation
and asymptotic normality of F̂n(y|x). Asymptotic results for this estimator under mixing conditions were stated in [25].

Let the conditional df of Y given X = x be F(y|x) = P(Y ≤ y|X = x), and its density function be f (y|x). In view of (1.2),
we, in this paper, define a new nonlinear wavelet-based estimator of f (y|x) for the LTRC model, and establish the MISE as
well as the asymptotic normality of the estimator with dependent data.

Next, for any df Q (y) = P(η ≤ y), its density function is denoted by q(y). We denote the left and right support endpoints
by aQ = inf{y : Q (y) > 0} and bQ = sup{y : Q (y) < 1}, respectively. Define

H1(y|x) = P(Z ≤ y, δ = 1|X = x), θ(x) = P(T ≤ Z |X = x),

C(y|x) = P(T ≤ y ≤ Z |X = x, T ≤ Z), Λ(y|x) =

∫ y

0

dF(t|x)
1 − F(t−|x)

= − ln(1 − F(y−
|x)).

Also, we define Q (y|x) = P(η ≤ y|X = x) and Q ∗(y) = P(η ≤ y|T ≤ Z), with density functions denoted by q(y|x) and
q∗(y), respectively. Then we haveM∗(x) = P(X ≤ x|T ≤ Z), H∗

1 (y|x) = P(Z ≤ y, δ = 1|X = x, T ≤ Z).

Remark 1.1. It is easy to verify that m∗(x) = θ−1θ(x)m(x). Assume that Y , T and W are conditionally independent given
X = x, thenΛ(y|x) =

 y
0

dH∗
1 (t|x)

C(t|x) for y < bH(·|x), and

C(y|x) = θ−1(x)L(y|x)(1 − G(y|x))(1 − F(y|x)), H∗

1 (y|x) = θ−1(x)
∫ y

0
L(t|x)(1 − G(t|x))f (t|x)dt.

In the sequel, {(Xi, Zi, Ti, δi), 1 ≤ i ≤ n} is assumed to be a stationary α-mixing sequence of random vectors. Recall that
a sequence {ζk, k ≥ 1} is said to be α-mixing if the α-mixing coefficient

α(n) := sup
k≥1

sup{|P(AB)− P(A)P(B)| : A ∈ F ∞

n+k, B ∈ F k
1 }
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